1。一个被动1米球,枪弹丸发射车(7英寸枪孔,3英寸亚尺度弹丸),一个分阶段 - 阵列跟踪雷达V-I 2。一个2米的被动球,带有反式思考,火箭升起的车辆,干涉仪型跟踪系统v-3 3 3.一个被动的球体,一个谷壳罐,火箭车,一个拼手阵列跟踪雷达V-3 4。旋转电线密度计(SWD),热敏电阻/降落伞和谷壳,火箭发射车,一个阶梯阵列雷达和两个遥测地面站V-3 5。分子荧光密度计(MFD),热敏电阻/降落伞,谷壳,火箭发射车辆,一个相阵列跟踪雷达和两个遥测地面站V-7 6。一个皮托系统,热敏电阻/降落伞和谷壳,火箭射击的车辆,一个阶梯式阵列跟踪雷达和两个遥测地面statiqns v-9
Orano 升级后的美国制造工厂使 NUHOMS 干式储存废核燃料罐产量翻了一番 为期两年的重大投资实现了产出目标,将所有制造转移到美国本土工厂,并提高了质量性能。马里兰州贝塞斯达,2021 年 1 月 15 日 — Orano 最近在其位于北卡罗来纳州克纳斯维尔的旗舰工厂完成了整合和实施流程,在增强其 NUHOMS ® 干式储存废核燃料罐的制造方面取得了重大成果。 2018 年,Orano 做出将所有重型制造业务外包的战略决策,从而导致其在克纳斯维尔建立了新的 TN 制造工厂。在 2019-2020 年期间,Orano 将为美国客户制造的所有 NUHOMS 罐整合到这一单一工厂,同时保持其全球供应链以应对突发资源,并升级了国内生产流程。 “与 2019 年相比,2020 年我们的产量翻了一番,”Orano NPS 美国首席运营官 Jean-Luc Palayer 表示,“同时保持了一支积极性高、表现出色的劳动力队伍,并使流程更加可重复和可靠。这对我们、我们的客户和美国废燃料管理来说都是一个重要的里程碑。” 2020 年,Orano 完成并交付了去年客户合同中的所有干式储存系统,产量是 2019 年的两倍,占该设施产能的三分之二。随着精益生产持续改进和额外的工作班次,该设施有能力再次将 2020 年的产量翻一番。TNF 设施经过专门调整,可制造 Orano 最新、最先进的干式燃料储存系统:NUHOMS EOS™。 EOS(扩展优化存储)系统由一个可定制长度的大直径不锈钢罐、一个内部金属合金“蛋箱”篮子(可容纳多达 37 PWR 或 89 BWR 矩形废燃料组件)和涂层碳钢屏蔽塞组成。在实施该设施的新制造能力的同时,Orano 的 EOS 工程师创建了一种互锁篮子设计,消除了篮子制造过程中的所有焊接。凭借这一创新,EOS 篮子的生产速度比传统产品速度快四倍,显著改善了整体生产线。在此实施期间,团队的质量表现和交付也取得了持续的改进。Orano 的美国客户体验到了我们灵活的国内供应链带来的好处,该供应链满足了他们 2020 年的所有准时承诺。Orano 先进的 EOS 技术已获得 NRC 许可,用于每罐高达 50 kW 的废燃料存储热负荷,这是业内最高的,并且是美国市场上唯一一个装载客户废燃料接近这一水平的高容量系统。这些 EOS 系统功能使反应堆所有者能够将较热的燃料组件和冷却时间较短的燃料从反应堆湿式储存池转移到安全的干式储存池中。这有利于运营中的核设施,因为它简化了储存池的管理,并不断减少湿式储存的高热和短冷却燃料组件库存。
专用设备:• PM-560 – Patriot PAC-2 前体测试、飞行模拟、故障排除和重新认证。用于导引头测试/验证的消声室,在 MDAGS 级别进行高级故障排除•控制部分测试装置 - 控制部分的飞行模拟测试和重新认证。液压/气动系统• SAD/ESAD 测试 – 确保设备安全性并可验证安全与解除武装 (S&A) 装置和电子安全与解除武装装置 (ESAD) 的可用性•现场电阻测试装置 - 对全能 PAC-2 的所有变体进行现场测试,以确保发射筒和导弹连接之间的连续性并验证导弹是否处于安全状态。便携式,可在世界任何地方使用•惯性传感器组件测试套件 - 用于陀螺仪/加速度计测试的氛围(环境)、加热器、离心机•现代化的地狱火通用测试套件 - 根据需要测试全弹导弹的导引头、激光和氮气供给控制部分测试•现代化的半主动激光导引头测试套件 - 地狱火导弹的先进导引头部分测试
ALARA 尽可能低 AMP 老化管理计划 CDE 承诺剂量当量 CFR 美国联邦法规 EFSC 能源设施选址委员会 EPA 美国环境保护署 EWEB 尤金水利电力局 FR 联邦公报 ISFSI 独立乏燃料贮存设施 LCA 许可证变更申请 LRA 许可证续期申请 MPC 多用途罐 NRC 美国核管理委员会 NDCC 俄勒冈州核能发展协调委员会 NTEC 俄勒冈州核能与热能委员会 OAR 俄勒冈州行政法规 ODOE 俄勒冈州能源部 OERS 俄勒冈州应急响应系统 ORS 俄勒冈州修订法规 PAG 防护行动指南 PGE 波特兰通用电气 PWR 压水反应堆 SAR 安全分析报告 SER 安全评估报告 SNC/BNFL 塞拉核能公司/英国核燃料有限公司 TEDE 总有效剂量当量 TLD 热释光剂量计 USDOE 美国能源部
A.purell®表面在现成的表面湿巾中擦拭突破。独特的饮酒配方在病原体上很难,没有刺激性化学物质 - 因此您可以迅速杀死细菌而无需担心。purell®表面产品杀死了99.9%的细菌和病毒,并且在食用方面是安全的,无需冲洗表面,戴手套或在使用后洗手。最适合在快速,方便的周转是关键时,最常见的高点触摸点,硬表面。在比较所有EPA注册的表面湿巾时,Purell®表面湿巾提供了强大的胚芽杀死和安心的前所未有的组合!项目#描述数量。9341-06PURELL®食品服务表面消毒湿巾 *6/cs。9342-06PURELL®专业表面消毒湿巾 *6/cs。9340-06PURELL®医疗表面消毒湿巾 *6/cs。9016-01PURELL®表面湿壁支架1/cs。 9116-01PURELL®表面湿巾分配架1/Cs。 *110 ct。罐9341-TSTSTSTRPPURELL®表面擦拭500/cs的主动配置测试条。9016-01PURELL®表面湿壁支架1/cs。9116-01PURELL®表面湿巾分配架1/Cs。*110 ct。罐9341-TSTSTSTRPPURELL®表面擦拭500/cs的主动配置测试条。
激光测振有助于验证游丝空间结构 美国宇航局正在开发大型超轻型结构,通常称为游丝空间结构。这些结构面积大,面密度小,这大大增加了地面测试的复杂性,因为地面操作界面和重力负荷会变得繁琐。激光测振已被证明是一种验证这些游丝结构结构特性的关键传感技术,因为它具有精度高、范围广和无接触的特性。 简介 美国宇航局多年来一直在开发游丝空间结构,以降低发射成本并利用特定概念的独特功能。例如,碟形天线(图 1)目前正在开发中,因为它们可以在太空中充气至 30 米大,然后刚性化以实现高数据速率通信。游丝结构的另一个例子是太阳帆,它是一种经济高效的无推进剂推进源。太阳帆跨越非常大的区域,以捕获光子的动量能量并利用它来推动航天器。太阳帆的推力虽然很小,但却是连续的,在整个任务期间都不需要推进剂。材料和超轻薄薄结构方面的最新进展使得大量有用的太空探索任务能够利用太阳帆推进。在 NASA 空间推进办公室 (ISP) 的指导下,ATK 空间系统、SRS 技术和 NASA 兰利研究中心的团队开发并评估了一种可扩展的太阳帆配置(图 2),以满足 NASA 未来的太空推进需求。在地面上测试太阳帆给工程师带来了三大挑战:测量比纸还薄的大面积表面;环境条件下的空气质量负荷很大,因此需要进行真空测试;高模态密度需要将表面划分为更易于管理的区域。本文将重点介绍在 NASA Glenn Plum Brook 设施的空间动力设施 (SPF) 真空室中完成的 20 米太阳帆概念动态测试的独特挑战。真空测量 Polytec 扫描激光测振仪系统 (PSV-400) 是用于测量振动模式的主要仪器。激光扫描头被放置在加压罐内,以保护其免受真空环境的影响(图 3)。罐内有一个窗口端口,激光从该窗口端口射出,强制空气冷却系统可防止过热。开发并实施了扫描镜系统 (SMS),该系统允许在真空室内从超过 60 米的距离对帆进行全场测量。SMS(图 3)安装在真空室设施顶部附近,位于测试物体上方,而测振仪头安装在
•会或合理地期望可以防止疾病,病情,伤害或残疾的发作。•将或合理地期望减少或改善疾病,病情,伤害或残疾的身体,精神或发育影响。•将帮助成员在执行日常活动中实现或维持最大的功能能力,并考虑成员的功能能力和适合相同年龄成员的功能能力所有用于家庭使用提供的耐用医疗设备的功能能力,都需要高级确定覆盖范围。在住院或门诊中心提供的设备不可单独偿还。负压伤口疗法必须通过参与耐用的医疗设备供应商获得。描述:真空辅助伤口闭合是一种用于促进慢性伤口愈合的技术。可以用作手术的辅助手术,也可以作为衰弱或非手术候选者的患者的手术替代方法。将带有附着的疏散管的特殊泡沫调味料插入伤口。伤口用粘附的闭合敷料密封。疏散管从伤口导致连接到负压泵的罐。负压从伤口中去除多余的间质液。这会导致水肿减少,从而使伤口床的血流增加。假设增加的血流为伤口提供氧气和养分,从而促进了肉芽组织的形成。适应症:它也将伤口的边缘靠近。
引言 1 一般背景 2 2.1 气味的定义 2 2.2 气味浓度与特征的区别 2 2.3 工业校准和标准化要求 2 恶臭气体标准的要求和实现 3 3.1 需要气味监测的工业过程 3 3.2 有气味物质的优先气体标准 5 3.2.1 二元标准 6 3.2.2 多组分标准 7 潜在客观嗅觉测量量表的研究 8 4.1 气味的分类 8 4.1.1 参考气味和“气味空间” 9 4.2 嗅觉分析(人体气味小组) 9 4.2.1 嗅觉分析的背景 9 4.2.2 气味小组测量 10 4.2.3 嗅觉计 12 4.2.4 气相色谱仪 (GC) 嗅探 13 4.2.5 气味值 13 4.3 气味感知理论 13 4.3.1 气味检测的生物模型 14 4.3.2 定量结构-活性关系 (QSARS) 14 4.3.3 分子振动-气味关系 15 4.4 非弹性电子隧道光谱 17 4.4.1 平面隧道光谱 17 4.4.2 扫描隧道显微镜技术 17 4.4.3 隧道光谱的模型计算 18 4.4.4 红外电子隧道光谱与气味之间的关系 20 4.4.5 红外吸收 23 有效的现场采样和测量方法 27 5.1 环境气味检测的要求27 5.2 取样方法 27 5.2.1 罐取样 27 5.2.2 吸附材料取样 28 5.3 测量方法 30 5.3.1 气相色谱法 (GC) 30 5.3.2 火焰离子化检测气相色谱法 (FlD) 31 5.3.3 硫化学发光法 32 5.3.4 气相色谱-质谱法 (GC-MS) 33 5.3.5 手性固定相气相色谱法 35 5.3.6 建议的环境气味分析方法 35 人工嗅觉计 (电子鼻) 的标准化和校准 37 6.1 电子鼻测量的背景 37 6.2 欧洲人工嗅觉感知网络 (NOSE) 38 6.3 标准化要求 38 结论40 7.1 气味标准 40
抽象背景不足控制的哮喘与发病率和医疗保健资源利用率增加有关(HCRU)。因此,为了量化哮喘护理对环境的影响,这种回顾性,同类,基于医疗保健的治疗成本(碳)研究估计了英国与控制良好相关的哮喘控制良好相关的温室气体(GHG)排放。方法包括在临床实践研究数据链接(2008年)中注册的当前哮喘(≥12岁)的患者。GHG emissions, measured as carbon dioxide equivalent (CO 2 e), were estimated for asthma-related medication use, HCRU and exacerbations during follow-up of patients with asthma classified at baseline as well-controlled (<3 short-acting β 2 -agonist (SABA) canisters/year and no exacerbations) or poorly controlled (≥3 SABA canisters/year or ≥1加重)。由于次优哮喘控制而导致的过量的温室气体排放包括≥3次SABA罐/年处方,病情加重,以及在住院后10天内或急诊室就诊的10天内进行的任何一般从业者和门诊就诊。分析的236例患者的结果,47.3%的基线哮喘控制较差。缩放到全国一级,英国哮喘护理的总体碳足迹为750 540吨E/年,哮喘控制不善,促成303 874吨Co 2 E/年的过量GHG排放量相当于英国> 12.4 000房屋的排放量。控制不良与控制良好的哮喘的总体上产生了3.1倍,人均碳足迹过剩,大部分是SABA引起的,HCRU的贡献较小。结论这些发现表明,解决哮喘控制良好的高负担,包括遏制高SABA使用及其加重的相关风险,可能会大大减轻与哮喘相关的碳排放。
抽象背景不足控制的哮喘与发病率和医疗保健资源利用率增加有关(HCRU)。因此,为了量化哮喘护理对环境的影响,这种回顾性,同类,基于医疗保健的治疗成本(碳)研究估计了英国与控制良好相关的哮喘控制良好相关的温室气体(GHG)排放。方法包括在临床实践研究数据链接(2008年)中注册的当前哮喘(≥12岁)的患者。GHG emissions, measured as carbon dioxide equivalent (CO 2 e), were estimated for asthma-related medication use, HCRU and exacerbations during follow-up of patients with asthma classified at baseline as well-controlled (<3 short-acting β 2 -agonist (SABA) canisters/year and no exacerbations) or poorly controlled (≥3 SABA canisters/year or ≥1加重)。由于次优哮喘控制而导致的过量的温室气体排放包括≥3次SABA罐/年处方,病情加重,以及在住院后10天内或急诊室就诊的10天内进行的任何一般从业者和门诊就诊。分析的236例患者的结果,47.3%的基线哮喘控制较差。缩放到全国一级,英国哮喘护理的总体碳足迹为750 540吨E/年,哮喘控制不善,促成303 874吨Co 2 E/年的过量GHG排放量相当于英国> 12.4 000房屋的排放量。控制不良与控制良好的哮喘的总体上产生了3.1倍,人均碳足迹过剩,大部分是SABA引起的,HCRU的贡献较小。结论这些发现表明,解决哮喘控制良好的高负担,包括遏制高SABA使用及其加重的相关风险,可能会大大减轻与哮喘相关的碳排放。