在过去的几十年中,源自植物种子的基于蔬菜的绝缘液体已成为一种在传统基于石油的矿物质绝缘油的环境友好替代品。这些植物油在高压绝缘层表现出极好的特征,包括显着的高温稳定性,在其闪光和火点中也很明显。此外,它们的高吸水能力可以保护变压器内部绝缘材料的完整性。但是,由于它们对氧化的敏感性,它们的实际应用仅限于密封的变压器。此外,由于在寒冷条件下的流量差,因此在低温区域中使用这些油提出了挑战。的低芥酸菜籽油,源自低芥酸菜籽油,提供了一组平衡的特性,尤其是关于倒数和氧化稳定性的,归因于其独特的脂肪酸组成。这项研究深入审查了可应用于低芥酸菜籽油的潜力,前景和可能的增强。包括重要的教程元素以及一些分析。的目的是揭示低芥酸菜籽油的深度属性,作为一种适合自由呼吸和密封的变压器的合适的绝缘液体,同时也确保它是在极冷环境中运行的变压器的有效冷却介质。所检查的许多属性,本综述特别关注氧化稳定性和油的流量特征。
该出版物的发行是为了进一步的合作推广工作,由5月8日和6月20日,1 9 1 4。它是由美国农业部合作而生产的;康奈尔合作扩展;康奈尔大学的农业与生命科学学院,人类生态学院和兽医学院。Cornell合作扩展提供了平等的计划和就业机会。Helene Dillard,导演。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
在 135 个独特分析中比较了每个种子质量性状的预测准确度,评估了对 GS 模型(九个回归模型)、群体(五个模型训练/验证群体设计)和标记密度(三个包含低、中和高密度的标记集)的响应。预测准确度(以预测和实际表型之间的相关性表示)范围从 0.023(总油含量)到 0.897(亚油酸含量)。预测准确度与性状复杂性呈负相关,与训练/验证群体相关程度呈正相关,标记密度或参数模型之间没有显着差异。机器学习模型的表现与普通参数模型相当或更差。总油含量是所分析的最复杂的性状,当改变上述因素时,准确度提高高达 0.745。
为了满足这些营养需求,生产者经常使用尿素和硫酸铵 (AMS) 的物理混合物。虽然物理混合物可能具有施肥者所需的营养量,但一旦撒在田地里,可能会导致营养条纹不均匀。另一种选择可能是均质混合物,包括大分子和次要营养元素,例如氮 (N)、钾 (K) 和硫酸盐-硫 (SO4-S),其中含有适合大多数土壤的最佳数量的这些营养元素。目标考虑到油菜籽与大多数作物相比具有较高的营养需求,2024 年在朗登研究推广中心进行了一项肥料试验。该试验由 UKT 芝加哥赞助。试验的目的是比较两种均质新肥料 NKS(28-0-5-6SO4-S)和 NKS(26-0-7-9SO4-S)与尿素和 AMS 等直接肥料的效果。新型肥料中的氮以铵 (NH4 + ) 和硝酸盐 (NO3 - ) 形式存在,因此与尿素不同,它们不会因氨挥发而损失。该研究采用了三种不同比率的氮、钾和硫酸盐-硫 (SO4-S),并测量了油菜籽的产量和质量。根据土壤有效磷的结果,所有处理统一施用磷。试验地点试验地点位于北达科他州兰登的 NDSU 兰登研究推广中心。处理和重复根据土壤分析结果,所有处理都采用了全比率的磷,即每英亩 72 磅,而采用尿素和 AMS 组合的直接施肥处理(T2、T3 和 T4)没有采用任何钾。但是,这些处理确实采用了等量的氮和等量或接近量的 SO4-S。由于均质肥料 NKS 28 和 NKS 26 中含有钾,因此 T5 至 T10 处理除了氮、磷和 SO4-S 外还添加了钾。此外,在 T2 至 T4 处理中,尿素以 14 毫升/10 磅的比例用脲酶抑制剂处理,所有肥料均以表面撒播的方式施用。肥料和养分类型及数量的详细信息见表 1。
农场和农业领导人敦促农民不要对在马尼托巴发现一种危险的新型油菜籽病害感到恐慌。但是,农民应该在冬季学习有关黄萎病的所有知识:如何发现它以及如何防止其蔓延。由于只有一个已知田地受到感染,因此仍有可能根除它。“我们已经对其进行了隔离,”马尼托巴省油菜种植者协会主席 Ed Rempel 说。加拿大油菜理事会主席 Patti Miller 表示根除是可能的。“如果这是一个完全孤立的事件,也许可以做些什么,”她说。“如果还有其他地点,您可以考虑其他风险缓解因素。”黄萎病是瑞典的头号油菜病。在收获季节,一块田地里发现了这种病害,大片的作物呈现出奇怪的枯萎模式。马尼托巴省农业部和加拿大食品检验局的官员视察了这块田地,采集了样本,组织了检疫措施,并追查了病原体的身份。
全球变暖、干旱、洪水和其他极端事件等气候变化的影响对全球作物生产构成了严峻挑战。油菜对油料产业的贡献使其成为国际贸易和农业经济的重要组成部分。这种作物遭受的多种非生物胁迫越来越多,导致农业经济损失,因此,让油菜作物在同时面临多种非生物胁迫时具有生存和维持产量的能力至关重要。为了更好地了解压力感知机制,需要分析多种压力响应基因和其他调控元件(如非编码 RNA)的调控途径。然而,我们对这些途径及其在油菜中的相互作用的理解还远未完成。本综述概述了目前对压力响应基因及其在赋予油菜多种压力耐受性方面的作用的了解。通过组学数据挖掘分析网络串扰现在使得揭示植物压力感知和信号传导所需的潜在复杂性成为可能。本文还讨论了新型生物技术方法,例如无转基因基因组编辑和利用纳米粒子作为基因传递工具。这些方法有助于为开发具有更少监管限制的、能够抵御气候变化的油菜品种提供解决方案。本文还强调了合成生物学通过微调应激调节元件来设计和修改网络的潜在能力,以适应植物对应激的适应。
回应了孟山都公司(以下称为孟山都)的请愿书11-188-01p,美国农业部(USDA)的动物和植物健康检查服务(Aphis)(APHIS)(USDA)已确定88302 CANOLA和OPENITY不太可能被视为pose pose pose soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph soph,在《联邦法规守则》第7章中,第340部分(7 CFR第340部分)。由于Aphis确定了88302 Canola不太可能构成植物害虫风险,因此Aphis会批准对非管制状态的请愿书88302 CANOLA。因此,Aphis批准的许可证或已确认的通知,这些通知将不再需要这些法规下的环境释放,州际运动或进口,而Mon 88302 Canola及其后代则不再需要。在7 CFR第319部分的Aphis外国隔离通知和第7 CFR部分的《联邦种子法》条例中,仍将遵守Aphis外国隔离通知。
在现代植物育种中,基因组选择已成为选择仅部分表型的大型繁殖种群中的优质基因型的黄金标准。许多育种计划通常依赖于单核苷酸多态性(SNP)标记来捕获全基因组的选择候选数据。为此,具有中等至高标记密度的SNP阵列代表了一种强大且具有成本效益的工具,可从大规模繁殖群体中生成可重现,易于处理的高通量基因型数据。但是,SNP阵列容易出现导致等位基因呼叫失败的技术错误。为了克服这个问题,基于失败的SNP调用纯粹是技术性的,通常会估算失败的呼叫。但是,这忽略了失败调用的生物学原因,例如:缺失 - 越来越多的证据表明基因存在 - 缺失和其他类型的基因组结构变体可以在表型表达中发挥作用。由于缺失通常不与其弯曲的SNP不平衡,因此缺少SNP调用的排列可能会掩盖有价值的标记 - 性状关联。在这项研究中,我们使用四个参数和两个机器学习模型分析了为低油菜籽和玉米分析的数据集,并证明基因组预测中的等位基因调用失败对重要的农艺性状具有很高的预测。我们根据种群结构和连锁不平衡提出了两个统计管道,这使可能由生物学原因引起的失败SNP调用过滤。对于所检查的人群和特征,基于这些过滤的失败等位基因调用的预测准确性与基于标准SNP的预测具有竞争力,这是基因组预测方法中缺失数据的潜在价值的基础。SNP与所有失败的等位基因调用或过滤等位基因调用的组合并不能以基于基因组关系估计的冗余性而获得的基于SNP的预测的预测均超过预测。
