从1990年代中期的首次商业化开始,批准了基因工程作物(也称为“转基因”或“转基因”植物)在越来越多的国家 /地区批准用于商业释放,用于种植,进入食品和饲料的组成,或在工业加工中使用。这些作品中的大多数是针对大豆,玉米,棉花和菜籽(菜籽)耐药性和除草剂耐受性特征的,旨在提高产量并降低生产成本。迄今为止种植的其他转基因作物包括Lucerne(苜蓿),甜菜,甘蔗,木瓜,红花,土豆,茄子,南瓜,苹果和菠萝在较小的地区。其他特征越来越多地引入工程植物中,使其适应生物或非生物压力,例如对干旱的抵抗力或在不断增长的环境中对盐的耐受性,或改变特征性的特征性,例如改性的油含量,木质素含量减少,非褐变或营养质量(生物质量化)。因此,在市场上采用和可用的转基因作物会扩大农民,工业和消费者的可能性。他们可以在解决全球关注的问题上发挥作用,例如在不断增长的人口环境中对食物的需求和饲料的增加,或者需要对农业的必要适应,以更好地适应气候变化。
农产品。年度化,该设施最多需要约100万吨的植物油,并且可以利用各种原料,主要是菜籽油和大豆油。成功的可再生能源 - Azure团队最近开发并出售了可再生式酿酒式燃料项目,并与瑞士的家庭办公室合作,提供财务支持。减少排放 - 生产的可再生燃料可减少每年2,600,000吨的CO 2。这大致相当于每年约55万乘乘用车的年度排放。项目资金 - Azure从自然资源的Azure安大略省项目中获得了500万加元,以及加拿大基础设施银行的840万美元用于其三个加拿大项目。重要的工作 - 需要大约1,500个建筑工作和150个全职职位。此外,将需要现场管理人员,并将包括设施管理和行政人员。环境管理 - 作为绿地设施,该项目将受益于最新技术,以确保实现环境标准。公司概述:
不断增长的人口和不断变化的环境引起了全球粮食安全的重大关注,目前几种重要农作物的改善率不足以满足未来需求1。这种缓慢的改善率部分归因于作物植物的长代时代。在这里,我们提出了一种称为“速度育种”的方法,该方法大大缩短了生成时间并加速了繁殖和研究计划。速度繁殖可用于春季麦(Triticum aestivum),硬脂小麦(T. durum),大麦(大麦(Hordeum vulgare)),鹰嘴豆(Cicer arietinum)和Pea(Pisum sativum)和4代Canola(brassica napus),代替2-3的情况下,可用于实现多达6代的春季。 我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。 在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。 通过发光二极管(LED)补充照明节省成本。 我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。可用于实现多达6代的春季。我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。通过发光二极管(LED)补充照明节省成本。我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。
同步加速器辐射(SR)提供了广泛的明亮光,可以量身定制以测试无数的研究问题。sr提供了跨尺度阐明结构和组成的途径,使其非常适合研究植物和种子。在这里,我们介绍了一系列方法论和在光源设施上可用的数据输出。数据集具有来自包括Citrullus sp的各种作物物种的种子和谷物。(西瓜),木制sp。(菜籽),Pisum sativum(Pea)和Triticum durum(小麦),以展示SR在推进植物科学方面的力量。SR微型计算层析成像(SR-µCT)成像的应用显示了内部种子微观结构及其三维形态,而无需破坏性切片。光谱探测了样品生物化学,详细介绍了种子大量营养素的空间分布,例如胚胎,胚乳和种子涂层中脂质,蛋白质和碳水化合物。使用同步加速器X射线的方法,包括X射线吸收光谱(XAS)和X射线荧光(XRF)成像显示元素分布,以在种子子组门中的空间图中绘制微量营养素并确定它们的物种。同步基谱镜(SM)允许在纳米级水平上解析化学成分。各种农作物种子数据集展示了加拿大光源五个梁线提供的结构和化学见解的范围,以及用于告知植物和农业研究的同步成像的潜力。
昆虫是地球上种类最丰富的群体之一。它们构成了许多动物多样性,并在生态系统中起着至关重要的作用,包括授粉,害虫控制和分解。但是,仅描述了这种多样性的一部分。南非被认为是全球生物学上最多样化的国家之一,估计有44,000种昆虫物种。许多农作物依赖于昆虫传粉媒介,包括菜籽,苹果,橘子和向日葵。目前缺乏野生传粉媒介会威胁农作物的产量,但我们对南非昆虫多样性的了解却很少。相对于南非的生物多样性,几乎没有分类专家,用于昆虫识别的方法可能是耗时且昂贵的。DNA条形码为加速昆虫生物多样性研究提供了重要的研究工具。在这篇综述中,我们询问了公共DNA条形码粗体(生命数据系统的条形码)数据库中的“昆虫”记录,并返回了416 211个已发表的记录,分配给28239个独特的垃圾箱(条形码指数编号)。我们确定了五个分类订单,其垃圾箱比南部非洲已知的物种多(膜翅目,双翅目,thysanoptera,plecoptera和strepsiptera)。大多数条形码记录均来自豪登省,姆普马兰加和林波波的不适陷阱采样,而南非其他地区的采样仍然很差。我们建议需要进行全面的国家抽样努力,以及对分类专业知识的投资增加,以在物种遗失以灭绝之前生成有关昆虫生物多样性的关键基线数据。
脂肪 - neshpentasure®SR具有脂质,菜籽油和亚麻籽油的来源,富含Omega 3,Monouns(Moffles)和多不饱和脂肪。必需的脂肪酸:α-烯醇(WIN)和Docosaexaenoic酸(DHA)有益于改善与心血管和神经损害等糖尿病有关的主要并发症。9糖尿病会导致血脂分布的变化,从而增加心血管风险。降低风险的一种形式,除了控制糖尿病外,还控制了风险因素,其中包括高胆固醇。因此,NeshPentasure®SR的配方中没有胆固醇。10有病理生理证据表明,MUFA对2型糖尿病的病原体的各种机制的积极作用。增加的MUFA消耗会导致胰岛素耐药性的改善,β细胞在胰岛素产生中的反应,增加的蛋白蛋白产生反应(LPG-1增加)以及胰岛素清除率降低。11,12,13
执行摘要于2024年1月,国家生物安全委员会(NBC)批准了2005年生物安全规则(PBR)的修正案。PBR的更改为进口遗传学工程(GE)商品(饲料和加工(FFP))提供了批准过程。以前,PBR处理的进口与国内种植批准相同,需要国内风险分析。此外,环境保护署(EPA)加强了其生物安全清算房屋来管理GE进口许可请求。EPA接收申请,对其进行检查,然后将其转介给EPA总干事的技术咨询委员会(TAC)。TAC审查了GE商品进口申请后,TAC将其转介给NBC以获得最终批准。截至2024年10月中旬,几个GE大豆进口请求已经通过了TAC审查,并正在等待NBC批准。一旦NBC授予最终批准,并获得了大豆进口许可,可能会遵循其他主要商品的进口商品,主要是Canola。巴基斯坦的农业生物技术监管框架由四个关键法律组成,即2005 PBR; 2012年巴基斯坦法案的知识产权组织; 2015年《种子修正案法》;以及2016年的《植物育种权利法》(PBRA)。第一代基因设计的GE棉花事件已被批准自2010年以来用于种植和使用。约95%的棉花农作物是棉花棉花。薄弱的知识产权执法阻碍了GE棉花种子的发展超出了可用的第一代特征。ge甘蔗已接近最终的监管批准以进行家庭种植。引用了使用常规非吉格的足够的国内生产,监管机构于2019年停止了GE玉米商业化。同时,缺乏法规清晰度可以阻止生命科学公司投资和追求GE现场作物研发。在没有IP保护的情况下,技术开发人员缺乏投资种子业务的动机。
加拿大农业及农业食品部公共基因编辑系统加速加拿大作物改良和创新(20210575) 首席研究员:Kevin Rozwadowski,加拿大农业及农业食品部 目标: 优化 CRISPR/Cas 基因编辑系统以在加拿大作物中发挥作用 编辑油菜基因以提高种子产量 ADF 资助:468,785 加元 综合创新战略构建基础,减轻豌豆根腐病威胁(20210610) 首席研究员:Syama Chatterton,加拿大农业及农业食品部 目标: 从多样化豌豆种质系核心集合中鉴定抗根腐病的遗传变异 利用基因组学预测和机器学习准确预测豌豆的根腐病抗性 提高评估镰刀菌的能力 开发创新工具,支持生产者在田间种植豌豆和扁豆 确定导致根腐病发展的关键环境和场地特定因素 共同资助方:萨斯喀彻温省豆类种植者协会;西部谷物研究基金会 ADF 资金:353,006 美元 降低鹰嘴豆和干豆中 FODMAP 含量的变化(20210689) 首席研究员:Brendan O'Leary,加拿大农业及农业食品部 目标: 确定适合人类食用的低 FODMAP 含量的加拿大干豆和鹰嘴豆品种和育种系 研究高温和干旱对鹰嘴豆和干豆种子灌浆过程中 FODMAP 积累的影响 量化种子加工成烤鹰嘴豆或罐装豆类后品种间 FODMAP 含量的变化 ADF 资金:90,001 美元
乙酰乳酸合酶(ALS)或乙酰羟基酸合酶(AHAS)是分支链必需氨基酸丝线,Leucine,Leucine和Isopoilucine的生物合成途径中的第一个酶(1,2)。来自五个化学组的磺酰脲(SU),咪唑酮(IMI),三唑吡吡咪定(TP),嘧啶基 - 硫代苯甲酸盐(PTB)和磺酰基 - 氨基氨基苯甲酸 - 氨基苯甲基 - 苯甲酸 - 苯二唑诺酮(SCT)抑制Als Amniv的序列化的除草剂。 乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。 因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。 但是,耐药的杂草很快出现了,即 在1987年在美国确定的抗性刺芽生菜(5)。 从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。 研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。 基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。除草剂。乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。但是,耐药的杂草很快出现了,即在1987年在美国确定的抗性刺芽生菜(5)。从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。网站http://www.weedscience.org呈现了根据每个AAS对ALS抑制剂获得的抗性除草剂杂草获得的阻力模式的更新记录[1]。
标题:可以通过培养生物能源作物来生产低碳燃料,提高土壤质量和农业生产率来评估美国东南部的Carinata生产的土壤有机碳固换的激励措施。这项研究通过采用生物能源作物Carinata来评估农民隔离SOC的激励措施。使用基于代理的建模方法模拟了两种农业管理方案 - 往常(BAU)和气候智能(无耕种)实践 - 在传统的作物轮作,相关的盈利能力,邻近农民的影响力以及个人的交往中,以说明农民的Carinata采用率。使用格鲁吉亚州,作为一个案例研究,结果表明,到2050年,农民分配了1056×10 3英亩(23.8%; 2.47英亩; 2.47英亩等同于1公顷的农田),以合同价格以每蒲式耳的蒲式耳种子的合同价格为6.5美元,并在BASECERAR中列出了BAIRE,并遇到了票价。相比之下,以相同的合同价格和SOC激励率,农民分配了1152×10 3英亩(25.9%)的土地,而在无耕作的情况下,SOC隔离为483.83×10 3 mg Co 2 E,这是BAU情况下的数量的近四倍。因此,这项研究表明了种子价格和SOC激励措施的组合,鼓励农民采用Carinata采用气候智能实践来获得更高的SOC隔离效益。关键字:基于代理的模型;生物能源;气候智能农业;土壤有机碳;激励措施,可持续航空燃料1。背景土壤有机碳(SOC)对于维持土壤质量和农业生产率至关重要(Corning等,2016)。除了其在土壤健康中的作用外,SOC对于解决气候变化问题很重要(Lal,2003; Paustian等,1997)。据估计,全球土壤中含有最大的有机碳(约2126.44 pg),这意味着SOC库存的小变化可能会对大气碳浓度产生重大影响(Stockmann等,2013)。一方面,仅释放全球SOC池的10%将相当于30年的人为温室气体(GHG)排放(Kirschbaum,2000年)。另一方面,在全球农业土壤的前1M中,土壤有机碳的每年增加0.4%,将隔离2-3 pg C年-1,有效地抵消了20-35%的全球人为温室气体发电的20-35%(Minasny等人,2017年)。因此,维持或增加SOC的全球股票不仅需要确保农业生产力和粮食安全,而且还需要打击气候变化。能源作物可以通过隔离SOC和生产低碳生物燃料的原料来在减轻温室气体中发挥重要作用(Elless等,2023)。但是,必须仔细计划生物能源作物的生产,以平衡这两个目标,并最大程度地减少食品,草原或林地土地利用的冲突(Bonin&Lal,2014; Qin等,2016)。carinata(Brassica carinata或埃塞俄比亚芥末)被确定为在美国东南部生产可持续航空燃料(SAF)(SE)的潜在主要原料(SE),因为其产量很高,干旱和热耐受性,适合冬季生产,冬季生产和低速度的成熟种子损坏(Christ et al ant Altering。Carinata的石油含量为40%,而其亲密竞争者Canola的油含量为43%(George等,2021),但在SE
