根据我们的协议,接受全腹部蚀刻的患者还必须具有长期的健康和健身目标。总体脂肪应在8%至15%之间。通常,这些患者非常适合,腹部扁平,但希望脂肪组织的特定减少以增强和详细说明肌肉组织。患者选择对于维持长期结果至关重要。我们以10年的术后结果进行了证明(图1)。我们认为,使用营养师和/或私人教练不一定是强制性的,因为许多患者保持健康的生活方式和低身体脂肪,而与这些介入无关。我们针对修饰的腹部蚀刻的选择标准,其中通过谱系半肌和沿着Linea alba的定义获得了较软的腹部轮廓,但不一定是“六羽”的完整肌肉定义,并不像全腹部蚀刻患者那样严格。与全腹蚀刻患者不同,他们的腹部脂肪垫中等。这些患者还应该具有运动性腹部肌肉和合理的健康计划。这项研究还证明了10%的血清率。我们注意到1990年代首次开始此过程时的血清瘤率很高,并开始使吸脂端口开放到排水管。自从这种情况下,我们注意到血清瘤速率为0%。这项研究也不特别认识到与腹部蚀刻相关的陡峭学习曲线和技术困难。意识到技术并学习这种技术确实存在陡峭的学习曲线,应该谨慎地形成。从使用较小,侵略性较小的插管和改良的腹部蚀刻开始(仅蚀刻Linea alba和Linea semilunaris)是一种安全的方法,对于外科医生开始使用该技术。首先通过浅表吸脂和差异脂质来建立凹槽是关键的。
摘要 — 在网络切片范式的支持下,预计各种垂直服务将填充未来的移动生态系统,同时在共享基础设施上有效共存。然而,垂直服务的内在多样性,加上移动基础设施资源的异构性,带来了严峻的管理挑战,需要深度架构创新,以无缝支持基于自动化、灵活性和可编程性的增强编排机制。在本文中,我们介绍了由 H2020 MonB5G 项目设计的新型网络切片管理和编排平台。所提出的概念通过使用人工智能驱动的分布式可编程管理架构来解决网络切片管理和编排的可扩展性问题。管理层级的不同级别都采用了支持人工智能的管理操作。所提出的架构是迈向自我管理网络切片的重要一步。索引术语 —5G、6G、网络切片、AI、ML、ZSM、管理、编排
We introduce phi-3-mini , a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a 电话。我们的培训数据集是用于PHI-2的扩展版本,该版本由大量过滤的公开可用的Web数据和合成数据组成。该模型还可以进一步符合鲁棒性,安全性和聊天格式。我们还提供了针对4.8T令牌训练的7B,14B型号的参数缩放结果,称为Phi-3-Small,Phi-3中,均比Phi-3-Mini(例如,MMLU上的75%,78%,在MT-Bench上的8.7,8.7,8.7,8.7,8.7,8.7,8.7)。为了增强多语言,多模式和长篇文化功能,我们在PHI-3.5系列中介绍了三个模型:Phi-3.5-Mini,Phi-3.5-Moe和Phi-3.5-Vision。与其他类似规模的开源模型相比,具有66亿个活动参数的16 x 3.8B MOE模型,在语言推理,数学和代码任务方面取得了卓越的性能,例如Llama 3.1和Mixtral系列,以及与GEMINI-1.5-FLASH和GPT-FLASH和GPT-FLASH和GPT-4O-MINI相比。与此同时,Phi-3.5-Vision是一个源自PHI-3.5- mini的42亿个参数模型,在推理任务方面表现出色,并且擅长处理单片图像和文本提示,以及多图像和文本提示。
欧盟的核心任务是重新定义其对欧洲安全和防务的贡献,特别是在威慑、防御和危机管理之间重新平衡其努力。这包括加强国防工业基础。这些决定将是近几十年来欧盟安全政策中前所未有的。保卫欧洲的基准在数量和质量上都发生了变化。尽管欧盟安全战略文件《战略指南针》(SC)是在俄罗斯第二次入侵乌克兰后发布的,但它仍然反映了危机管理的旧模式。与此同时,由于重新关注威慑和防御,北约在国防政策中的作用和影响力不断增强。2024 年峰会将设定新的能力目标,并为国防工业结构和计划提供动力。此外,国防工业的全球动态正在发生变化。这对于旨在参与地缘政治世界的欧盟具有重要意义。未来的 EDTIB 必须超越传统的国家-欧盟二分法来考虑。确保 EDTIB 的相关性和一致性需要在全球快速变化的环境中思考。
摘要:环境条件对太阳能发电系统 (SPGS) 的输出功率有显著影响,进而影响配电网络的稳定性和可靠性。本文建议在 SPGS 中使用功率平滑功能。太阳能电池阵列、电池组、双输入降压-升压直流-交流逆变器 (DIBBDAI) 和升压功率转换器 (BPC) 组成了建议的 SPGS。DIBBDAI 集成了直流-交流功率转换、降压和升压功能。在电池组和太阳能电池阵列之间,BPC 用作电池充电器。对于建议的 SPGS,只需一个功率级即可将太阳能电池阵列或电池组的直流电转换为交流电。此外,太阳能电池阵列使用单个功率级为电池组充电。这提高了太阳能电池阵列、电池组和公用事业的功率转换效率。为了稳定 SPGS 的输出功率,当太阳能电池阵列的输出功率发生显著波动时,电池组会充电或放电。此外,太阳能电池阵列的寄生电容引起的漏电流可以通过 DIBBDAI 抑制。建议的 SPGS 电源转换接口可减少漏电流、平滑功率波动并提高电源效率。为了确认建议的 SPGS 的功能,完成了硬件原型。
尽管致力于研究量化的光模式与物质之间的相互作用,但所谓的Ultrastrong耦合制度仍然对理论处理提出了重大挑战,并阻止了许多常见的近似值。在这里,我们展示了一种可以描述任何相互作用方面的混合量子系统动力学的方法。我们扩展了一种用于将任意系统的几种量化量化的方法扩展到Ultrastrong Light-MATTER耦合的情况下,并表明即使可以使用lindblad Master方程来处理此类系统,其中仅通过在负频率上充分抑制EM环境的有效频谱密度,即衰减仅在光子模式上作用于光子模式。我们证明了我们的框架的有效性,并表明它的表现要优于简单模型系统的当前最新主体方程,然后研究无法应用现有方法的现实纳米质设置。
三菱电气公司prd.gnews@nk.mitsubishielectric.co.co.jpeng。)kiwa@okayama-u.ac.jp https://www.okayama-u.ac.jp/user/eng_aemt/index/index.html评估和宣传科,Osaka Universition of Engineering,Osaka University kou-soumu-soumu-soumu-hyoukakouhou@osaka.osaka.osaka-akaaka-akaaka-saka.jp worder&diveriie.jp wordies rigrige&diveriie.jp risies rimiese.jp risies rimie>
可以氧化一氧化碳(CO氧化剂)的抽象原核生物可以将这种气体用作碳或能量的来源。他们用氧化碳脱氢酶(CODH)氧化一氧化碳:将其分为含镍的CODH(NI-CODH),这些CODH(NI-CODH)对O 2敏感,含钼的CODH(MO-CODH),可以有氧作用。CO氧化剂对氧化CO所需的氧气条件可能受到限制,因为到目前为止已分离并表征的氧气条件包含NI-或MO-CODH。在这里,我们报告了一种新颖的CO氧化剂,Paragebacillus sp。g301,它能够基于基因组和生理表征使用两种类型的CODH进行氧化。从淡水湖的沉积物中分离出这种嗜热的疗养院厌氧菌细菌。基因组分析表明,菌株G301具有Ni-CoDH和Mo-CoDH。基于基因组的呼吸机械和生理研究的重建表明,Ni-CODH的CO氧化与H 2的产生(质子还原)耦合,而MO-CODH的CO氧化与在有氧和硝酸盐下减少的有氧氧化和硝酸盐的氧化相结合。G301将能够在各种条件下通过CO氧化繁殖,从有氧环境到厌氧环境,即使没有末端电子受体以外的其他末端电子受体。比较基因组分析表明,除了副杆菌中的CO氧化剂和非CO氧化剂之间的CO氧化外,基因组结构和编码的细胞功能没有显着差异。 CO氧化基因仅用于CO代谢和相关呼吸。
简介军事应用所需的可充电电池面临着关键的挑战,包括在极端温度下的性能,与军事后勤工艺的兼容性,从传统电池技术中淘汰,以及COTS锂离子电池具有专用军事运营要求和遗产平台的COTS锂离子电池的兼容性不佳。为了应对这些挑战,CAMX Power已开发出来,并且是一种基于我们专有的Gemx®高性能阴极材料(许可授予L&F Co.,Semsung SDI,LG Energy Solution和EV金属组)的商业化锂离子电池技术。这种电池技术以CELX-RC®为商标,具有高功率和快速充电能力,长寿,出色的性能和充电能力,在极高的温度下,出色的安全性,0V的排放能力和存储能力,并且可以在没有管理电子设备的电池中实现。CAMX Power正在为仍依靠诸如铅酸和镍卡德蒙等传统化学的军事应用开发CELX-RC,以及其他将受益于其能力,生活,安全性和健壮性的独特结合的应用。
正在研究几个永久性的太阳系体,包括火星和冰冷的月亮。在这样的位置,微生物的寿命必须应对低温和高压和低压,在火星表面上的 * 10 2到10 3 pa,在冰冷月球地下海洋中的 * 10 8 –10 9 pa。细菌肉细菌由以前被证明在低温下和低压或高压下没有氧气的物种组成,但迄今尚未探索该属的整个压力范围。在本研究中,我们在2 c的厌氧条件下,在复杂的液体培养基中进行了14种代表11种的肉网菌株,在2 c和一系列压力下,跨越5个数量级的压力,从10 3