许多生物材料表现出多尺寸孔隙度,其小,主要是纳米级孔以及大的宏观毛细管,可同时实现优化的大量传输能力和具有较大内表面的轻量级结构。意识到人工材料中这种层次的孔隙度需要经常进行复杂且昂贵的上部处理,从而限制了可扩展性。在这里,我们提出了一种方法,该方法将基于金属辅助化学蚀刻(MACE)与光刻诱导的宏观诱导的孔隙率结合在一起,以合成单晶硅与双峰孔径分布,即通过六边形的静脉内部脉冲分离,以六边形的孔隙分布,以至于六边形分布,该分离是六边形的脉络孔分布的。 穿过。MACE过程主要由金属催化的还原氧化反应引导,其中银纳米颗粒(AGNP)用作催化剂。在此过程中,AGNP充当自螺旋体的颗粒,它们沿着轨迹不断去除硅。高分辨率的X射线成像和电子断层扫描显示出较大的开放孔隙度和内部表面,可用于在高性能的储能,收获和转换中,或用于芯片传感器和精神分线。最后,层次多孔的硅膜可以通过热氧化为层次多孔的无定形二氧化硅来转化结构,该材料可能特别感兴趣,对于光流体和(生物 - )光子应用而导致其多孔具有多种形式的人工血管化。
摘要:i-motif是一类非标准DNA结构,具有潜在的生物学意义。已经开发了一种具有紫外吸收分光光度检测(CE-UV)方法的新型毛细管电泳,用于快速分析I-MoTIF折叠平衡,这是pH和温度的函数。在使用适当的调理程序后,用32厘米长的熔融二氧化硅毛细管(HPC)永久涂有32厘米长的二氧化硅毛细管,以32厘米长的熔融二氧化硅毛细管(使用适当的调节程序)以实现良好的可重复性后,进行了电泳分析。然而,研究了富含胞质的I-motiF序列(即TT,PY39WT和NMY01)之间的折叠和展开构象体之间的电泳分离受到损害,尤其是对于PY39WT和NMY01而言,导致完全重叠的峰。因此,具有多元曲线分辨率最小二乘(MCR-ALS)的反向卷积,对于在pH 6.5和12和40°C之间的不同浓度水平上发现的折叠和展开的物种的有效分离,利用电动机动机和UV光谱级别的小差异。MCR-ALS还提供了用于估计温度(T M)的定量信息,这些信息与紫外线和圆形二科(CD)光谱镜相似。获得的结果表明,由MCR-ALS辅助的CE-UV可能成为一种非常有用的工具,可以使I-Motifs和其他复杂DNA结构的折叠进行新颖的见解。
重新填充CM严重疟疾主要由恶性疟原虫寄生虫引起[1]。其临床表现之一是CM,每年对人类的生活造成重大损失[2]。就像许多影响中枢神经系统(CNS)(见词汇表)的疾病一样,CM的特征是脑血管功能障碍。血管,神经元和常驻免疫细胞之间的动态,协调的相互作用对于大脑健康至关重要,并且有证据表明这些相互作用的失调是CM的原因[3]。通常,其神经病理学是由恶性疟原虫感染的红细胞(IRBC)的细胞辅助引起的,导致将现象定义为螯合[4]。然而,由于该领域的几项进展,在过去几年中,这种范式在过去几年中经历了重大措施。例如,单细胞基因组技术现在可以在功能上分离脑动脉,静脉和毛细血管[5]。内部显微镜已实时可视化寄生虫和免疫细胞活性[6-8]。淋巴系统的发现为了解如何被CNS抗原激活的免疫细胞奠定了基础[9]。,在疟疾流行国家,新的筛查,诊断和预后生物标志物以及出现的辅助治疗方案[10]中,磁共振成像(MRI)设施的可用性提高[10]使我们的理解,识别和治疗疾病可以向前迈进。我们在此类发展的背景下介绍了这篇综述,并强调了CM发病机理的新假设。
在他人面前,代表NIDDM 4-8的诊断筛查线索。樱桃血管瘤(Senile Angioma,Campbell de Morgan,CA)是一种常见的血管肿瘤,通常在生命的第三个十年后发展。它由乳头状真皮内的毛细血管和毛细血管后静脉的良性扩散组成。早期病变显示为红色斑节,几个月后将其演变成红紫色的丘疹。它们通常是无症状的,但是由于创伤很少出血。最常见的参与场所是躯干和四肢。儿童CA的发生率极低(2%);相反,40岁以上的成年人中有一半至少有一个CA病变9-11。发病机理尚不清楚,而是包括遗传背景,热带气候,衰老,荷尔蒙作用(高car菌异常和妊娠),因环孢菌素,肝移植,肝移植,宿主疾病(GVHD),病毒病理学(Herpes virus 8),化学疗法和2-BRON和BRON,BRON和BRON,BRON,BRON,BRON,BRON,BRON,BRON,BRON,BRON,BRON,BRON,BRON,BRON,BRON,BRON和BRON,抑制免疫抑制的因素,抑制免疫力(GVHD)已经提出了恶性肿瘤(淋巴增生性肿瘤和皮肤肿瘤)。患有CA的受试者具有增加的肥大细胞,这可能导致血管的增殖和CA的发展,这是由于血管生成标记的主要释放或结缔组织的降解10,12,13。最近的研究表明CA与代谢综合征和脂肪肝的关联。一些研究表明,NIDDM 9,10,12,13中CA病变的患病率增加。这项研究评估了NIDDM患者与健康成年人相比的CA患病率。
1 沙特阿拉伯 Shaqra 大学应用医学科学学院临床实验室科学系。通讯作者:Babu Joseph bjoseph@su.edu.sa 引用方式:AL-GHANAYEM, AA 等人。山奈酚通过抗菌和抗氧化作用促进糖尿病大鼠的伤口愈合,而没有增殖作用。生物科学杂志。2024, 40, e40015。https://doi.org/10.14393/BJ-v40n0a2024-68974 摘要 研究新型植物化学物质用于预防和治疗多重耐药病原体引起的感染正受到关注。本研究评估了山奈酚对耐甲氧西林金黄色葡萄球菌 (MRSA) 和铜绿假单胞菌的体外抗菌活性。使用烟酰胺-链脲佐菌素诱发的糖尿病大鼠的切除伤口模型确定了其在体内抑制这些病原体的效果。山奈酚在体内和体外均表现出对测试细菌的抑制作用。1% (w/w) 浓度下它也能愈合切除伤口。在山奈酚治疗后观察到伤口组织中抗氧化酶的增加。与感染对照组相比,伤口组织中 MRSA 和铜绿假单胞菌数量减少,上皮化期缩短。苏木精和伊红染色检测到上皮变厚、毛细血管新生,炎症细胞减少。此外,Masson 三色染色观察到胶原纤维及其沉积增加。 40 µM 浓度的山奈酚对在高葡萄糖培养基中生长的人类角质形成细胞没有任何毒性,也不会影响促愈合细胞因子基因血管内皮生长因子 (VEGF) 和转化生长因子- -1 (TGFβ1) 的表达。山奈酚具有抗菌和抗氧化作用,但不会增加增殖基因的表达。关键词:上皮化。切除伤口。TGF- 1. VEGF。1. 简介
背景:糖尿病可能会引起多种眼部疾病,包括白内障,青光眼,其他眼部异常,复发性雷特尼,非尿液前缺血性视神经神经病和糖尿病性乳头状疾病。目的:使用光学相干性层析成像血管造影检查在患有非增殖性疾病的糖尿病性视网膜病患者中,检查视网膜的毛细血管。患者和方法:这是一项前瞻性横截面临床研究,在34例患者中进行了60只眼睛,分为两组:A组包括19例患者的30只眼睛,其中19例具有不同增殖性糖尿病性视网膜病变(NPDR)的患者,B组B组包括15只健康患者的30眼,患有正常健康的眼睛作为对照组。从2020年12月至2021年12月之间的纪念眼科研究所的门诊眼科诊所的患者中选择了所有参与者。结果:由于糖素的结果,糖尿病的持续时间范围为8至25年,平均为12年。病例组中禁食的血糖和糖化血红蛋白值的显着高于对照组。肾功能和脂质效果在患者和对照组之间没有显着变化。就眼科检查而言,有关最校正视力,未校正的视力和眼内压力的对照之间没有差异。结论:在黄斑区域中,NPDR患者的绒毛膜(CC)流量显着降低。此外,CC血流受到糖化血红蛋白的影响,这表明NPDR和血糖控制不良的患者可能对CC血流有显着损害。
脑血管结构的变化是许多脑部疾病的关键指标。原发性血管病、血管危险因素(例如糖尿病)、创伤性脑损伤、血管闭塞和中风均会影响脑血管网络的功能 1 – 3 。阿尔茨海默病的典型症状,包括 tau 蛋白病和淀粉样变性,也会导致血管异常重塑 1、4 ,从而使毛细血管稀疏可用作血管损伤的标志 5 。因此,对整个脑血管进行定量分析对于更好地了解生理和病理状态下的脑功能至关重要。然而,量化脑血管网络的微米级变化一直很困难,主要有两个原因。首先,尚未实现对小鼠完整脑血管直至最小血管的标记和成像。磁共振成像 (MRI)、微型计算机断层扫描 (micro-CT) 和光学相干断层扫描的分辨率不足以捕捉大块组织中的毛细血管 6 – 8 。荧光显微镜提供更高的分辨率,但通常只能应用于厚度不超过 200 μ m 的组织切片 9 。组织透明化方面的最新进展可以克服这个问题 10 ,但到目前为止,还没有对整个大脑中所有尺寸的所有血管进行三维 (3D) 的系统描述。第二个挑战涉及对大型 3D 成像数据集的自动分析,这些数据集在不同深度的信号强度和信噪比 (SNR) 存在很大差异。简单的基于强度和形状的滤波方法,例如 Frangi 的血管滤波器以及具有局部空间自适应性的更先进的图像处理方法,无法可靠地将血管与
绝热与等温CAES 在讨论绝热CAES(例如 Storelectric 所提出的CAES)时,人们经常将其与等温CAES(例如 Lightsail、SustainX 和 General Compression 所提出的CAES)混淆。事实上,这两者有着根本的不同。CAES 压缩空气储能 (CAES) 使用多余或廉价的能源(例如来自电网或可再生能源发电)将空气压缩至高压 – 通常为 70bar。当再次需要能源时,空气被释放来为涡轮机提供动力(或辅助动力),从而再生电能。由于压缩空气的能量密度不高,需要大量的压缩空气,因此使用地质储存;现有的CAES 使用盐穴,这是目前用于大量储存天然气和其他碳氢化合物、危险废物等的众所周知的技术。尽管欧洲近 1/3 的天然气储量都存储在盐穴中,但从未发生过此类盐穴坍塌的情况。盐穴是人工建造的,盐盆地遍布世界各地。传统压缩空气储能系统将空气压缩到 70bar 时,温度会升高到 ~650 o C。但空气不能储存在高于 ~42 o C 的盐穴中,否则盐穴会恶化。因此,传统压缩空气储能系统会将压缩热浪费在冷却塔中。然而,在大致环境温度下从 70bar 膨胀会将空气冷却到 ~-150 o C。这不仅会冻结环境,还会冻结设备,从而毁坏设备,因此需要将热量重新放回去。传统压缩空气储能系统通过燃烧气体来释放膨胀热。Huntorf 和 McIntosh 使用的方法是将压缩空气送入燃气轮机,从而使燃气轮机更节省燃料。但它燃烧的天然气仍是同等规模发电站的 50-60%(McIntosh 为 60-70%),其往返效率(所有能量输出:输入)最多为 50%(Huntorf 为 42%),尽管更现代的设备渴望达到 ~54%。因为膨胀是通过经过特殊改装的涡轮机进行的,所以传统的 CAES 只有固定尺寸的。等温 CAES 等温 CAES(Lightsail、SustainX、General Compression)意识到压缩空气的最有效方式是在恒定的低温下。因此,他们发明了新型压缩机,可在 ~40 o C 时提取热量。然而,这只考虑了半个周期:提取的热量无法在系统内使用,因此被浪费了。这留下了与传统 CAES 相同的膨胀问题,他们声称通过从环境中吸收热量来解决这个问题:温度足够低,(例如)热泵或工业废热可以提供它。但所需的热量之多,将使任何此类清除工作都难以完成,除非是在非常特殊的地点,例如使用冶炼厂的废热。而且,新型膨胀机还不够完善;而新型压缩机也无法最大限度地提高效率、成本效益或可靠性。绝热 CAES 绝热 CAES 在整个压缩和膨胀循环中平衡热量,储存压缩热量以便在膨胀期间重复使用。RWE 已停用的 Adele 提案 https://www.youtube.com/watch?v=K4yJx5yTzO4(2'39” 视频)中展示了其原理,该提案建议将压缩热量储存在布满毛细管的陶瓷存储器中,以通过陶瓷扩散热量。砖块是陶瓷的。这实际上是两个夜间储热加热器,每个加热器都有一座塔楼那么大,它会膨胀和收缩,摩擦成灰尘(从而堵塞任何可以进入的通道)并压碎毛细管,导致非常高的维护成本和频繁的长时间停电以重建存储器。建造和隔热这样的容器成本高昂。 Storelectric www.storelectric.com 开发了其专有的绝热技术,该技术效率高(40MW 时效率约为 62%,500MW 时效率可提高至约 67%),可利用现有技术建造,经济高效,并已获得 Costain、Fortum、西门子和 Mott MacDonald 等众多跨国工程公司的认可。由于它使用“现成的”压缩机和膨胀机,因此非常可靠,几乎可以建造任何配备此类压缩机和膨胀机的规模。
双光子荧光显微镜 (2PM) 的最新进展使得活体小鼠的血管网络大规模成像和分析成为可能。然而,提取密集毛细血管床的网络图和矢量表示仍然是许多应用中的瓶颈。血管矢量化在算法上很困难,因为血管具有多种形状和大小,样本通常光照不均匀,并且需要较大的图像体积才能获得良好的统计能力。最先进的三维血管矢量化方法通常需要分割(二值)图像,依赖于手动或监督机器注释。因此,逐体素图像分割会受到人类注释者或训练者的偏见。此外,分割图像通常需要在骨架化或矢量化之前进行补救形态学过滤。为了解决这些限制,我们提出了一种矢量化方法,可从未分割图像中直接提取血管对象,而无需机器学习或训练。 MATLAB 中的无分割自动化血管矢量化 (SLAVV) 源代码已在 GitHub 上公开提供。这种新方法使用简单的血管解剖模型、高效的线性滤波和矢量提取算法来消除图像分割要求,用手动或自动矢量分类取而代之。半自动化 SLAVV 在小鼠皮层微血管网络(毛细血管、小动脉和小静脉)的三个体内 2PM 图像体积上进行了演示。矢量化性能已被证明对于血浆或内皮标记对比度的选择具有稳健性,并且处理成本与输入图像体积成比例。全自动 SLAVV 性能在不同质量的模拟 2PM 图像上进行评估,所有图像均基于大(1.4 × 0.9 × 0.6 mm 3 和 1.6 × 10 8 体素)输入图像。从自动矢量化图像计算出的感兴趣的血管统计数据(例如体积分数、表面积密度)比从强度阈值图像计算出的统计数据具有更高的图像质量稳定性。
高嗜中性粒细胞与淋巴细胞比与疾病的严重程度和肺炎的预后不良有关,急性呼吸窘迫综合征(ARDS)(Steinberg等,1994),包括Covid-19(Coronavirus病)(Coronavirus Pishision-19)(Coronavirus Pishision-19)(Coronavirus Pishision-19),由新颖的SARS-COV-2 Coronavirus(Coronavirus Novely Sars-Cov-2 Coronavirus)(wranavirus and coronavirus and anda and an an an an an an an an an an an an an an w w an an an an an n anda an。在支气管肺泡灌洗中描述了中性粒细胞在肺毛细血管中的广泛滤过及其向肺泡空间的渗出(Steinberg等,1994)和尸检(Barnes等,2020; Wang et al。,2020b)。中性粒细胞是防御局部侵入病原体的第一条防御线,它们使用效应子功能,例如吞噬作用,脱粒,脱粒和反应性氧(ROS)的形成。中性粒细胞的过度激活导致嗜中性粒细胞外陷阱(NET)释放,由反染色质染色质组成,用骨髓氧化酶(MPO),嗜中性粒细胞弹性酶(NE)和其他细菌蛋白质和其他细菌蛋白质组成。网通常伴有细胞死亡,因此,此过程称为Netosis。检查严重肺炎患者(Twaddell等,2019)以及感染了SARS-COV-2的患者(Zuo等,2020)发现Netosis标记物的水平升高,例如无细胞DNA,无细胞DNA,MPO-DNA-complexes,MPO-DNA-complexes,柠檬酮H3和Cell dealdy Heardy dealdy deardy lactandate dectrate dectrate declogenate。这种血清在体外系统中诱导健康供体血液中的肠病(Barnes等,2020; Zuo等,2020)。在Covid-19患者的血清中,无细胞DNA的浓度与中性粒细胞含量,炎症C反应蛋白的急性相的标记以及血栓形成D-二聚体的标记(Zuo等,2020)。COVID-19的表现之一是川崎综合征,川崎综合症是一种血管炎,发生在儿童中,并伴有过度的Netosis(Yoshida等,2020)。COVID-19中的Netosis可能是由受病毒,活化血小板和炎性细胞因子影响的上皮细胞和内皮细胞引起的。At the same time, excessive NETosis is involved in the development of the «cytokine storm» and immunothrombosis, which are the main cause of severe complications associated with COVID-19 ( Wang et al., 2020a ; Barnes et al., 2020 ), as well as with H1N1 in fl uenza and some other viral infections ( Cantan et al., 2019 ).