引言 - 肌肉指导的基因疗法迅速引起注意,主要是因为肌肉是易于访问的目标组织,并且也与各种严重的遗传疾病有关。几种血清型的重组腺相关病毒(RAAV)向量的局部和全身传递导致骨骼和心脏肌肉的有效转导非常有效,这在小动物以及人类中都实现了。肌肉是许多肌肉营养不良疾病的基因治疗中的靶组织,也可以被用作生物疗法,以产生全身性疾病的分泌因素。使用RAAV进行肌肉基因转移的当前局限性包括载体尺寸限制,诸如靶向毒性的潜在安全问题以及既有中和的中和抗体的免疫屏障组成,以及针对人类AAV Capsid的CD8 + T细胞反应。
adeno相关的病毒(AAV)向量已成为体内基因替代疗法的首选平台,并代表了治疗单基因疾病(如血友病)的最有希望的策略之一。然而,对基因转移的免疫反应在临床试验中阻碍了人类基因治疗。在过去的十年中,很明显,先天免疫识别为诱导抗原特异性反应提供了信号,以针对载体或转基因产物产生。尤其是,TLR9识别对静脉细胞类树突状细胞(PDC)中载体的DNA基因组的识别已被鉴定为关键因素。来自临床试验和临床前研究的数据在矢量基因组中实施CpG基序,作为免疫反应的驱动因素,尤其是CD8 + T细胞激活的驱动因素。在这里,我们证明了AAV capsid特异性CD8 + T细胞的交叉化是否取决于XCR1 +
结果:与接受单剂量的小鼠相比,在两种RAAV9-微肺炎剂量后,白细胞的病毒载量显着增加了77倍。重复的基因疗法在肌肉中导致肌肉中的病毒载量较低和微肺炎表达。用两种RAAV9-微生病剂量治疗的小鼠中有63%产生了肌营养不良蛋白的抗体,在用两种RAAV9-微生病剂量和组合疗法治疗的小鼠中,该抗体较少(25%)。同样,接受联合疗法的小鼠中AAV CAPSID特异性抗体水平也降低。与单独的RAAV9-微育蛋白相比,通过质谱,免疫荧光和蛋白质印迹评估的骨骼肌中的微肺炎表达在结合处理的小鼠中的水平明显高。
语法结合蛋白1(STXBP1)是一种突触蛋白,可调节SNARE复合物的形成和突触囊泡释放。STXBP1中的从头杂合性突变引起的STXBP1脑病(也称为STXBP1突变引起的遗传性癫痫),一种罕见的,破坏性的神经发育障碍和遗传性癫痫,影响全球范围1:30,000 Newborns Globally lul low low peepepepepepepepepez-ara eala and and newborns。STXBP1脑病的特征在于神经元交流,癫痫,严重的智力障碍,运动障碍和癫痫中突然意外死亡的特征。成功修改疾病的治疗需要在整个神经元中补充STXBP1蛋白水平。使用STXBP1脑病的小鼠(MUR)模型,我们证明,使用替代capsid(Cap.b10)的基因补充策略,该策略在小鼠中施用后跨液脑屏障(BBB)跨越血脑屏障(BBB),可以实现剂量依赖于剂量依赖于剂量的和长期的核心疾病(Ch)。 #38)。
调节和功能遗传元件(例如启动子,增强子,限制酶位点,转基因和选择标记物)。信息包括但不限于病毒capsID的组成,包膜结构,分子量,粒径,糖基化位点,基因组的性质(单链,双链,DNA或RNA,DNA或RNA,每个颗粒的基因组的拷贝数),病毒载体的热门(例如, 病毒载体对特定宿主组织的特异性)。 •对于质粒载体,提供调节和功能遗传元件的示意图(例如) 启动子,增强子,限制酶位点,转基因和选择标记物)。 信息包括但不限于物理特性,生化特征,遗传标记和位置(例如) 插入的外源基因的质粒,偶发或染色体)。 •用于使用基因编辑技术,提供病毒载体对特定宿主组织的特异性)。•对于质粒载体,提供调节和功能遗传元件的示意图(例如启动子,增强子,限制酶位点,转基因和选择标记物)。信息包括但不限于物理特性,生化特征,遗传标记和位置(例如插入的外源基因的质粒,偶发或染色体)。 •用于使用基因编辑技术,提供插入的外源基因的质粒,偶发或染色体)。•用于使用基因编辑技术,提供
VivoVec:我们专有的体内基因传递技术平台,用于向 T 细胞传递基因。VivoVec™ 颗粒是生物生成的脂质纳米颗粒,大小约为 100 纳米,我们认为这是生物技术应用领域中最先进的脂质纳米颗粒。VivoVec 颗粒由外部脂质包膜包裹,该包膜包裹着约 10 kb 的 RNA 序列,RNA 序列包裹在蛋白质衣壳中。该外壳内包含其他组件,这些组件可将有效载荷信息整合到宿主细胞基因组中。VivoVec 颗粒仅用作人类 T 细胞的信息传递装置 - 颗粒的任何组件都不会完整地整合到靶细胞中。相反,RNA 组件中的信息会转化为 DNA 片段,并整合到靶细胞基因组中。VivoVec 作用机制 VivoVec 颗粒具有多种作用机制:
调控和功能性遗传元件(例如启动子、增强子、限制性酶切位点、转基因和选择标记)的示意图。信息包括但不限于病毒衣壳的组成、包膜结构、分子量、颗粒大小、糖基化位点、基因组的性质(单链、双链、DNA 或 RNA、每个颗粒的基因组拷贝数)、病毒载体的趋向性(例如病毒载体对特定宿主组织的特异性)。• 对于质粒载体,提供调控和功能性遗传元件(例如启动子、增强子、限制性酶切位点、转基因和选择标记)的示意图。信息包括但不限于插入的外来基因的物理特性、生化、生长特性、遗传标记和位置(例如在质粒上、游离型或染色体上)。• 对于基因编辑技术的使用,提供
欧洲CVDPV2分离株的测序鉴定出与Sabin 2疫苗菌株的43-50个核苷酸的VP1衣壳蛋白编码区的差异。总体而言,在所有欧洲分离株中都发现了这些核苷酸差异中的38个。它们具有13个核苷酸的常见差异,与最接近的NIE-ZAS-1分离株发生了变化,这些分离株先前在阿尔及利亚,几内亚和马里被检测到。在这些欧洲国家中检测到的病毒群体呈现出单个谱系(即它们表现出核苷酸变化的共同模式,这使得它们与彼此之间的关系更紧密,而不是与Nie-Zas-1出现中的任何其他非欧洲分离物更紧密相关);但是,集群中存在一系列遗传差异,同一国家不同地点的同时分离彼此之间表现出很大的差异(4)。
审查了通过全球脊髓灰质炎计划收集的脊髓灰质炎监测和实验室数据。在2021年8月至2023年7月期间,在六个国家中发现了NOPV2起源于61例和39个瘫痪案例和39个环境监测(污水)样本的七个CVDPV2。分离株在VP1衣壳蛋白编码区(6至16个核苷酸取代)中与亲本NOPV2疫苗菌株的差异有限,这表明在疫苗接种后相对较早地检测到的监测发现出现。该活动由CDC审查,认为不是研究,并与适用的联邦法律和CDC政策一致。*