逆转录病毒可被先天免疫传感器环鸟苷酸环磷酸腺苷合酶 (cGAS) 检测到,该合酶可识别逆转录 DNA 并激活抗病毒反应。然而,HIV-1 保护其基因组免受 cGAS 识别的程度仍不清楚。为了详细研究这一过程的机制,我们在无细胞系统中重建了 HIV-1 的逆转录、基因组释放和先天免疫感应。我们发现,即使在完成逆转录后,野生型 HIV-1 衣壳也能保护病毒基因组免受 cGAS 的侵害。病毒 DNA 可能因热应激、衣壳突变或肌醇六磷酸 (IP6) 浓度降低而“脱保护”,这些因素会使衣壳不稳定。令人惊讶的是,衣壳抑制剂 lenacapavir 也会破坏病毒核心并显著增强 cGAS 活性,无论是在体外还是在细胞感染中。我们的研究结果提供了生化证据,表明 HIV-1 衣壳晶格隐藏了 cGAS 的基因组,而病毒核心的化学或物理破坏可以暴露 HIV-1 DNA 并激活先天免疫信号。
08:30 – 10:00 第五场:分子病毒学 III 8:30 – 8:40 对空衣壳和含 pgRNA 衣壳的蛋白质组学分析揭示了调节 pgRNA 包装和 HBV 基因组复制的细胞蛋白 刘晖 8:40 – 8:45 问答 8:45 – 8:55 在肝脏周转过程中保留共价闭合环状 DNA 的乙肝感染细胞的表征 Henrik Zhang 8:55 – 9:00 问答 9:00 – 9:10 SLF2 在与超螺旋 HBV DNA 结合时发生相分离 高子豪 9:10 – 9:15 问答 9:15 – 9:25 体内聚合酶 delta 缺陷对乙肝病毒 cccDNA 生物合成的影响 Andoni Gomez 9:25 – 9:30 问答 9:30 – 9:40 HDV RNA 位于核斑点内,在感染 HDV 的原代人肝细胞 (PHH) 中,HDV 复制需要 RNA 聚合酶 II Beatrice Ary 9:40 – 9:45 问答 9:45 – 9:55 建立 HBV 感染仓鼠模型的可行性:体外证据 张虎 9:55 – 10:00 问答
蛋白精氨酸甲基转移酶(PRMT)介导的精氨酸甲基化是一种重要的转录后修饰,可调节各种细胞过程,包括表观遗传基因调节,基因组稳定性,RNA代谢,应激反应性信号转移。已经广泛讨论了精氨酸甲基化和神经系统疾病中精氨酸甲基化的不同底物和生物学功能,这为针对PRMT的临床应用中的基本原理提供了理由。越来越多的研究表明精氨酸甲基化和病毒感染之间存在相互作用。PRMT已被发现甲基甲基化和调节几种宿主细胞蛋白和不同功能类型的病毒蛋白,例如病毒capsids,mRNA出口商,转录因子和潜伏期调节剂。这种调节会影响其活性,亚细胞定位,蛋白质 - 核酸和蛋白质 - 蛋白质相互作用,最终影响其在各种病毒相关过程中的作用。在这篇综述中,我们通过组蛋白和非源性的甲基化讨论了PRMT及其多效性生物学功能的分类,结构和调节。此外,我们总结了PRMT底物的广泛范围,并探讨了它们对各种病毒感染过程和抗病毒先天免疫的复杂作用。因此,理解精氨酸甲基化的调节为理解病毒疾病的发病机理和发现抗病毒药疗法的机会提供了关键的基础。
使用病毒载体(例如AAV)实现了体内基因编辑,但是这些稳定的基于DNA的载体导致Cas9核糖核酸酶和SGRNA在细胞7中的长期表达。虽然扩展到编辑机械的接触可能有利于基因校正率,但它也可能导致脱靶遗传改变的积累8,9。此外,AAV CAPSIDS的免疫原性触发中和抗体和T细胞反应限制了基于AAV的治疗方法的重复给药10;但是,由于较高的细胞周转率11,肺中的基因编辑受益于重复给药。此外,尺寸限制对将有效的Pyogenes CRISPR-CAS9(SPCAS9)构建体构成了挑战,将其限制到AAVS 12中。可以通过非病毒,基于mRNA的递送平台来克服这些局限性,该平台能够瞬时表达并重复给药13。LNP是最先进的非病毒载体,如Moderna和Pfizer/Biontech开发的广泛接受的mRNA疫苗技术所见,并在Cas9肝基因编辑平台14-16中显示出巨大的希望。然而,尚未报告基于LNP的CAS9递送系统,用于有效的肺基因修饰。与肝脏相比,由于其专门的细胞类型,粘液屏障和粘膜缩减清除率,肺部对分娩构成了独特的挑战。因此,由于大多数病毒和非病毒方法17,气道上皮仍然很差,因此仍然需要采取有效的方法。
在内外翻转碱基允许DNA纳米结构连续变形。一小部分瓷砖的复杂结构的抽象组装是生物学中的一个共同主题。例如,许多相同蛋白质的副本构成多面体形状的,病毒式衣壳和微管蛋白可以产生长的微管。这启发了基于瓷砖的DNA自组装纳米构造的发展,特别是对于具有高对称性的结构。在最终结构中,每种类型的图案都将采用相同的构象,无论是刚性还是具有定义的灵活性。对于没有对称性的结构,它们的组装仍然是一小部分瓷砖的挑战。为了应对这一挑战,算法的自组装是由计算科学探索的,但是尚不清楚如何将这种方法实施到一维(1D)结构。在这里,我们已经证明了构象平衡的不断变化可以使一维结构发展。如原子力显微镜成像所示,一种类型的DNA瓷砖已成功组装成DNA螺旋和同心圆,从结构的中心弯曲越来越少。这项工作指向基于瓷砖的DNA组件的新方向。
摘要:合成生物学集中于生物部位的设计和模块化组装,以构建人工生物系统。在过去的十年中,合成生物学已经成长为高产的领域,在神经科学,基于细胞的疗法和化学制造等不同地区取得了进步。同样,基因治疗领域在概念验证研究和临床环境中都取得了巨大的进步。基因治疗兴趣增加的一个病毒载体是腺病毒(AD)。广告势头增加的主要部分来自合成生物学对广告工程的发展。基因疗法和合成生物学的收敛性通过降低体内的AD毒性,提供精确的AD型向性欲,并纳入遗传回路以制造适应环境刺激的智能疗法,从而增强了AD媒介。AD载体的合成生物学工程可能会导致卓越的基因输送和编辑平台,从而可以在广泛的治疗环境中找到应用。关键字:腺病毒,CRISPR,基因治疗,遗传回路,蛋白质工程,合成生物学,病毒式衣壳,病毒toral疗法T
和受影响细胞的转录组(图2a – d)。例如,RNA干扰(RNAI)通过利用序列特异性抑制基因表达来干扰蛋白质翻译,显示出慢性疼痛治疗的希望,并批准了几种基于RNAI的方法在各种非神经疾病疾病条件下用于临床使用16。慢性疼痛疗法的另一种潜在适用方法使用反义寡核苷酸(ASOS),该方法在转录组水平上起作用以干扰mRNA加工,从而导致感兴趣的蛋白质耗尽并抑制其功能17。但是,RNAi和基于ASO的干扰都在效率以及细胞或组织特异性方面都有局限性。18,19。尽管基因递送方法有了重大改进,但针对特定细胞感兴趣的载体(例如患者的主要感觉神经元)仍然是一个挑战,这阻碍了将实验疗法转化为临床用途。基因编辑中赢得诺贝尔奖的发现为各种治疗性干预措施带来了激动的机会,在单个或小组的核酸的水平上进行了操纵以及调节元素,从而提供了调整细胞活性的前景,包括一组细胞的活性,包括一级SORY NEURONS NEURONS NEURONS 20,20,21 21。例如,CRISPR – CAS9系统允许在DNA水平上进行分子修改,并具有主要的转化前景(图2d)。CRISPR干扰的精度优于RNAi和ASO,部分原因是,与靶向mRNA的干扰方法不同,DCAS9可以在转录水平上进行选择性操纵。正在为改善和扩展CRISPR系统的努力,以提高功效和安全性,包括使用基因组或CRISPR干扰系统中使用催化无效的CAS9 CAS9酶(Dead cas9(DCAS9))在基因组或CRIS PR的干扰系统中进行调整,从而抑制转录的转录,而不会改变DNA序列中的DNA序列,而不会改变基因组序列2222。采用了作用于RNA(ADAR)或催化无效的CAS13的腺苷脱氨酶的RNA靶向的更多方法,还允许对RNA进行编辑,从而以更好的安全性23,24产生瞬时和可逆调节蛋白质表达。像DNA编辑的方法一样,具有表观遗传机制操纵的新兴技术显示出临床使用的巨大转化潜力25。包括CRISPR在内的大多数基因治疗系统都依赖于病毒载体对转基因的妄想(表1),这些媒介具有生物不兼容,基因组压力和不需要的抗tar-效果26、27的风险。鉴于这些挑战,已经探索了替代输送系统,包括使用干细胞,功能化脂质体和免疫学中性纳米载体13,28。自定义病毒capsids,并仔细选择了载体中的基因组插入位点,并操纵了Capsids的自动化机制以及合成递送系统的使用,还可以最大程度地减少当前基因治疗方法的不良反应,并增强在包括Thrance Medical Compores(包括Chrance becompies)中,包括Chrmicapies,包括Chronic 11,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,29。
本演讲以及随附的口头评论包含有关我们当前期望的前瞻性陈述。这些陈述不能保证未来的绩效,并且会受到难以预测的某些风险和不确定性。我们的实际结果可能与表达的结果有重大差异。无法保证我们和我们的合作者将能够开发商业上可行的产品。在截至2023年12月31日的财政年度的表格10-K年度报告中,这些风险和不确定性更全面地描述了,如Sangamo的季度报告所述,截至2024年3月31日,Sangamo季度报告截至2024年3月31日的季度报告,并申请了证券交易委员会(SEC“ SEC”),并提交了SEC的未来报告。本演示文稿中包含的前瞻性陈述仅在此日起,我们不承担更新此类信息的义务,除非适用法律规定。本演讲涉及临床前和/或临床调查下的研究产品候选者,并且尚未获得任何监管机构批准进行营销的研究。他们目前仅限于研究用途,并且在对其进行调查的目的的安全或功效方面没有任何陈述。关于安全或功效的任何讨论仅参考此处介绍的具体结果,并且可能不会表明监管机构对安全性或功效的最终发现。这些前瞻性陈述包括但不限于以下陈述:我们的候选产品和工程辛酸的治疗性和商业潜力,包括STAC-BBB释放各种神经疾病的重大潜力的能力,我们的计划在各种神经系统疾病中的治疗,我们的计划,我们的计划侧重于确定性地进行批准,并有效地进行批准,并有效地进行批准,并有效地验证,并有效地进行了库存,并有效地进行了库存,并有效地进行了库存,并有效地构成了库存,并有效地进行了库存,并有效地进行了批准,并有效地构成了库存,并有效地构成了库存,并有效地进行了鉴于,并有效地进行了库存,并有效地进行了库存,并有效地进行了批准,并将其列入 diseases and the timing, availability and costs of such therapies, the potential to use ZF, the MINT platform, SIFTER and other technologies to develop durable, safe and effective therapies and capsids, the potential for us to benefit and earn milestone and royalty payments from our collaborations and the timing of any such benefits and payments, plans and expectations to seek partners or collaborators for certain of our programs, plans regarding our financial resources, including the sufficiency thereof and plans to reduce our operating expenses, the impact of our streamlined structure and future potential cost reductions, anticipated plans and timelines for us and our collaborators dosing patients in and conducting our ongoing and potential future clinical trials and presenting data from our clinical trials and making regulatory submissions, the anticipated advancement of our product candidates to late-stage development, including potential future registrational trials, execution of our corporate strategy, our pipeline, the identification of其他目标,以及临床前计划的进步,向诊所,关键里程碑和催化剂以及其他不是历史事实的陈述。
扩大基因治疗应用需要可制造的载体,这些载体可以有效地传导人类和临床前模型中的靶细胞。传统的腺相关病毒 (AAV) 衣壳文库选择方法无法在广阔的序列空间中搜索一小部分具有临床转化所必需的多种性状的载体。在这里,我们介绍了 Fit4-Function,这是一种可通用的机器学习 (ML) 方法,用于系统地设计多性状 AAV 衣壳。通过利用均匀采样可制造序列空间的衣壳文库,可以生成可重复的筛选数据来训练准确的序列到功能模型。结合六种模型,我们设计了一个多性状(肝脏靶向、可制造)衣壳文库,并根据所有六个预定标准验证了 88% 的文库变体。此外,仅使用小鼠体内和人类体外 Fit4Function 数据进行训练的模型准确预测了 AAV 衣壳变体在恒河猴中的生物分布。顶级候选物表现出与 AAV9 相当的生产产量、高效的小鼠肝脏转导、高达 1000 倍的人类肝细胞转导以及在恒河猴肝脏转导筛选中相对于 AAV9 的富集度增加。Fit4Function 策略最终使得预测肽修饰 AAV 衣壳的跨物种性状成为可能,并且是组装预测 AAV 衣壳在数十种性状中表现的 ML 图谱的关键一步。
门前病毒(Kingdom Bamfordvirae,Realm varidnaviria)是多种病毒的广泛组合,其相对较短的双链DNA基因组(<50 kbp)产生了由双果冻 - 双果冻 - 卷胶卷蛋白构建的二十os虫。前肿瘤动物感染所有细胞结构域的宿主,证明其古老的起源,尤其是与真核生物的七个超级组中的六个有关。前肿瘤分子包括四个主要的病毒组,即Polinton,Polinton,例如病毒(PLV),病毒噬细胞和腺毒。我们使用蛋白质结构建模和分析来表明蛋白质的DNA聚合酶(PPOLBS),polins,病毒噬细胞和细胞质线性质粒涵盖了n-终末结构域与末端蛋白(TPS)的N-末端域同源物(TPS),例如原始prd1-涉及tpectiricotic andototic artectirIdotics和eukaryotic artirIdotics artirIdotic artirIdotic artineciridotics anden tectirifiridotic toNERIFIRIDICRIDOTICSIRIATICS -ETENIRIDOTIOTICTIRIDOTOCTIOTICTIRIDS复制启动,以病毒卵巢肿瘤 - 类半胱氨酸去泛素酶(votu)结构域为由。投票域可能是导致TP从大型PPOLB多肽裂解的原因,并且在腺毒中被灭活,其中TP是单独的蛋白质。许多PLV和转囊编码了Polinton的独特衍生物 - 例如保留TP,Fotu和PPOLB聚合棕榈域的PPOLB,但缺乏外核酸酶域,而含有一个超家族1个旋转酶结构域。分析了在真核前肿瘤前胞菌中,对投票域的存在/不存在和将PPOLB用其他DNA聚合酶代替,使我们能够概述其起源和进化的完整情况。