抗生素耐药危机已成为近几十年来全球性的公共卫生威胁[1–4]。卡巴培南类抗生素是一类抗菌谱最广、抗菌活性最强的非典型β-内酰胺类抗生素。然而,耐卡巴培南类鲍曼不动杆菌(CRAB)仍在不断出现,该菌是一种含脂多糖(LPS)的革兰氏阴性细菌,对多种抗生素产生耐药性,难以清除[5,6]。CRAB是院内感染的头号病原菌,可引起严重肺炎、血流感染等,侵袭性CRAB感染患者病死率可高达40%~60%,已被世界卫生组织列为一类重点病原菌。由于缺乏可行的抗生素策略,部分患者采用噬菌体联合疗法,但疗效有限[7]。因此,迫切需要发现和开发针对CRAB的新抗生素。
细菌病原体的多重耐药性对人类健康构成威胁,而耐卡巴培南类肠杆菌 (CRE) 感染的出现严重影响着人口福祉。卡巴培南类耐药性的出现是一个主要问题,特别是对于重症监护病房 (ICU) 和其他高危病房,这已经导致了严重的后果 (Tamma 等人,2021)。详细研究导致细菌卡巴培南类耐药性的机制可能有助于克服和管理这一研究课题 (Mascellino 等人,2024)。CRE 通常携带多种耐药基因,这些基因能够通过垂直和水平途径传播 (Rumbo 等人,2011)。这些耐药元素限制了治疗选择,与感染卡巴培南类敏感菌株的患者相比,一些患者需要更长的治疗时间,需要重症监护,并且毒性更高。因此,需要新的替代方法来对抗细菌耐药性在人群中的传播,并治疗感染危及生命的耐碳青霉烯类革兰氏阴性菌的患者(Oliva 等人,2021 年;Tompkins 和 van Duin,2021 年)。开发新型抗生素可能是一个解决方案。然而世界卫生组织 (WHO) 总干事谭德塞博士原话是:“自 2017 年中期以来,仅批准了 13 种新抗生素,其中只有两种代表新的化学类别并被认为是创新的。”分子研究在了解细菌耐药性机制方面发挥着重要作用。例如,在革兰氏阴性菌中发现了可移动的粘菌素耐药基因 (mcr-1 至 mcr-10) 及其变体,这对临床感染的治疗构成了新的威胁。开发了一种使用多重 TaqMan 实时 PCR 检测的新型方法来检测可移动的粘菌素耐药基因。该方法具有较高的特异性、敏感性和可重复性(Gong 等)。先前的一项研究检查了波兰产生新德里金属-β-内酰胺酶的肺炎克雷伯菌菌株的体外药物敏感性。发现头孢地洛、埃拉环素、替加环素、头孢他啶/阿维巴坦 (CAZ/AVI) 和氨曲南是最有效的抗生素,表明 CAZ/AVI 加氨曲南对测试菌株具有 100% 的体外敏感性。由于这两种药物的安全性和成本效益,
演讲者简介 Aída Alonso-del Valle 博士 疫苗开发经理,VAXDYN,西班牙 Aída Alonso-del Valle 博士是一位细菌学家,专攻抗生素耐药性肠道细菌的生态学和进化,她早期的研究工作深入研究了克雷伯氏菌中质粒介导的碳青霉烯类耐药性。 她于 2016 年获得阿尔卡拉大学公共卫生和传染病研究应用微生物学硕士学位,并于 2023 年获得马德里康普顿斯大学博士学位。 她曾在西班牙马德里国立生物技术中心 (CNB-CSIC) 和法国巴黎巴斯德研究所进行研究,这使她在高影响力期刊上发表了多篇论文 (ORCID:https://orcid.org/0000-0002-5154-5778) 并在国际会议上进行了多次交流。 2023年,她加入Vaxdyn担任疫苗开发总监,领导技术团队并加强公司不同疫苗开发的研究力度。
摘要:本研究探讨了香草兰提取物(EVPA)对环磷酰胺(Cy)诱导的小鼠免疫抑制的免疫保护作用。结果表明,EVPA可显著减轻Cy诱导的免疫损伤,改善小鼠体重、脏器指数和结肠损伤。进一步对微生物多样性的分析发现,EVPA主要增加了有益菌Verrucomicrobiota、乳酸杆菌科和乳酸杆菌属的丰度,同时降低了Akkermansiaceae、Akkermansia、Romboutsia和乳球菌属的丰度,从而改善了Cy引起的微生态失调。代谢组学分析显示,EVPA 治疗后,微生物代谢物水平发生了显著变化,包括尿胆原、甲酰胺嘧啶核苷三磷酸、Cer (d18:1/18:0)、泛酰巯基乙胺和 LysoPC (15:0/0:0)。这些改变的代谢物与鞘脂代谢、卡巴培南生物合成、泛酸和辅酶A生物合成、甘油磷脂代谢以及卟啉代谢相关的途径有关。此外,某些微生物组与差异代谢物之间存在显著相关性。这些发现为 EVPA 对肠道菌群和代谢的免疫调节作用提供了新的见解,为其更广泛的应用奠定了基础。
肠杆菌科细菌,如肺炎克雷伯菌和大肠杆菌,对碳青霉烯类抗生素的耐药性对欧盟/欧洲经济区 (EU/EEA) 国家的患者和医疗保健系统构成了重大威胁。自 2019 年欧洲疾病预防控制中心发布最新一期耐碳青霉烯类肠杆菌科细菌 (CRE) 快速风险评估以来,有各种迹象表明欧盟/欧洲经济区的流行病学状况正在持续恶化。这些迹象包括 (a) 由于医院内持续传播高危谱系的碳青霉烯类耐药肺炎克雷伯菌,23 个欧盟成员国的碳青霉烯类耐药肺炎克雷伯菌血流感染发病率增加;(b) 肺炎克雷伯菌的毒力和耐药性趋于一致,包括携带碳青霉烯酶基因的高毒力肺炎克雷伯菌 ST23 在医院内的传播;(c) 新出现的携带碳青霉烯酶基因的肠杆菌科细菌种; (d) 质粒介导的碳青霉烯酶基因传播,引起医院内和整个医疗保健网络内的疫情爆发;(e) 增加对携带碳青霉烯酶基因的高危谱系大肠杆菌分离株(包括孤立病例和聚集性病例)的检测,这些分离株有在社区传播的风险。
• 2021 年,在重症监护病房 (ICU) 住院超过两天的患者中有 11,551 名 (15.6%) 出现至少一种 ICU 获得性医院相关感染 (HAI)(肺炎、血流感染或尿路感染)。 • 在 ICU 住院超过两天的所有患者中,10% 出现肺炎,8% 出现血流感染 (BSI),4% 出现尿路感染 (UTI)。 • 66% 的肺炎发作与插管有关,38% 的 BSI 发作与导管有关,97% 的 UTI 发作与导尿管有关。 • ICU 获得性肺炎发作中分离出的最常见微生物是铜绿假单胞菌,ICU 获得性血流感染中分离出的凝固酶阴性葡萄球菌,以及 ICU 获得性尿路感染中分离出的大肠杆菌。 • 53% 的“治疗日”(DOT)中抗菌药物的使用是经验性的,38% 的 DOT 中是指导性的,9% 的 DOT 中是预防性的。 • 15% 的金黄色葡萄球菌分离株对苯唑西林有耐药性 (MRSA),7% 的肠球菌属对糖肽有耐药性。据报道,20% 的大肠杆菌分离株、42% 的克雷伯氏菌属分离株和 46% 的肠杆菌属分离株对第三代头孢菌素有耐药性。据报道,12% 的克雷伯氏菌分离株、30% 的铜绿假单胞菌分离株和 85% 的鲍曼不动杆菌分离株对卡巴培南类抗生素有耐药性。
•在2020年,在监测下至少有一个ICU获得的医疗保健相关感染(HAI)(肺炎,血液质感染,或泌尿术感染),在重症监护病房(ICU)中停留的11124(12.7%)在重症监护室(ICU)中至少出现。•在ICU中停留超过两天的所有患者中,有8%出现肺炎,6%患有血液感染(BSI),尿路感染(UTI)为3%。•71%的肺炎发作与插管有关,38%的BSI发作与导管相关,而95%的UTI发作与尿导管的存在有关。•最常见的微生物是ICU获得的肺炎发作中的铜绿假单胞菌,在ICU获得的BSIS中,ICU型BSIS中的凝固酶阴性葡萄球菌和ICU摄取的Escherichia大肠菌中的葡萄球菌。•在51%的“治疗日”(DOTS)中,抗菌剂的使用是经验的,指向37%的点,而在10%的点中进行了预防。•金黄色葡萄球菌分离株的14%是耐氧蛋白(MRSA)和16%的肠球菌spp。是抗糖肽。在22%的大肠杆菌分离株(38%的克雷伯氏菌属)中抗抗性头孢菌素。隔离株和39%的肠杆菌属。隔离。碳青霉苯甲酸抗性属于克雷伯氏菌属的11%。分离株,铜绿假单胞菌分离株的26%,鲍曼尼杆菌的54%分离株。
•在2019年,在监测(肺炎,血液质感染,或泌尿术感染)下,在重症监护病房(ICU)中保留至少有一个ICU获得的医疗保健相关感染(HAI)的患者,至少有一个ICU获得的医疗相关感染(HAI)。•在所有患者中停留超过两天的患者中,有4%出现肺炎,3%患有血液感染(BSI),尿路感染(UTI)为2%。•约96%的肺炎发作与插管有关,44%的BSI发作与导管相关,而94%的UTI发作与尿导管的存在有关。•最常见的微生物是克雷伯氏菌属。在ICU获得的肺炎发作中,ICU获得的血液感染中的凝固酶阴性葡萄球菌和ICU获得的尿路感染中的大肠杆菌。•在治疗的59%(DOTS)中,抗菌素的使用是经验,指向23%的点,而预防性为14%。•大约11%的金黄色葡萄球菌分离株是耐氧蛋白(MRSA)和14%的肠球菌spp。分离株是耐糖肽的。在15%的大肠杆菌分离株(占克雷伯氏菌属的38%)中报道了对第三代头孢菌素的抗性。 隔离株和37%的肠杆菌属。 隔离。 据报道,碳青霉苯甲酸甲基属于克雷伯氏菌属的17%。 分离株,铜绿假单胞菌分离株的26%,鲍曼尼杆菌分离株的82%。在15%的大肠杆菌分离株(占克雷伯氏菌属的38%)中报道了对第三代头孢菌素的抗性。隔离株和37%的肠杆菌属。隔离。碳青霉苯甲酸甲基属于克雷伯氏菌属的17%。分离株,铜绿假单胞菌分离株的26%,鲍曼尼杆菌分离株的82%。
质粒抗生素抗性基因(ARGS)的共轭转移是ARG传播的重要途径。 据报道,越来越多的抗生素和非抗生素化合物有助于ARG的传播,强调了控制这种水平转移的潜在挑战。 开发阻断或延迟含有ARG质粒转移的共轭抑制剂是控制抗生素耐药性传播的有前途的策略。 尽管这种抑制剂很少见,但它们通常表现出相对较高的毒性和体内效力低,并且它们的作用机制却不足以理解。 在这里,我们研究了一种用于治疗疟疾的青蒿素衍生物(一种用于治疗疟疾)对结合的影响。 dha抑制了埃斯耐里希亚大肠杆菌中超过160倍的体外体外,在小鼠模型中,含有超过160倍的(INCX4质粒)在大肠杆菌中超过160倍(MCR-1)的结合,在体外的体外超过160倍(INCI2质粒)。 它还抑制了带有碳青霉烯电阻基因BLA NDM-5的Incx3质粒的转移,体外超过两倍。 检测细胞内三磷酸(ATP)和质子动力(PMF)以及转录组和代谢组分析的结合表明,DHA损害了电子传输链(ETC)的功能,通过抑制三碳酸(TCA)循环范围,并破坏分裂的PMF,并破坏pmf的临时性。 转移。 我们的发现为提供了新的见解质粒抗生素抗性基因(ARGS)的共轭转移是ARG传播的重要途径。据报道,越来越多的抗生素和非抗生素化合物有助于ARG的传播,强调了控制这种水平转移的潜在挑战。开发阻断或延迟含有ARG质粒转移的共轭抑制剂是控制抗生素耐药性传播的有前途的策略。尽管这种抑制剂很少见,但它们通常表现出相对较高的毒性和体内效力低,并且它们的作用机制却不足以理解。在这里,我们研究了一种用于治疗疟疾的青蒿素衍生物(一种用于治疗疟疾)对结合的影响。dha抑制了埃斯耐里希亚大肠杆菌中超过160倍的体外体外,在小鼠模型中,含有超过160倍的(INCX4质粒)在大肠杆菌中超过160倍(MCR-1)的结合,在体外的体外超过160倍(INCI2质粒)。它还抑制了带有碳青霉烯电阻基因BLA NDM-5的Incx3质粒的转移,体外超过两倍。检测细胞内三磷酸(ATP)和质子动力(PMF)以及转录组和代谢组分析的结合表明,DHA损害了电子传输链(ETC)的功能,通过抑制三碳酸(TCA)循环范围,并破坏分裂的PMF,并破坏pmf的临时性。 转移。我们的发现为此外,在DHA暴露期间,与结合和菌毛产生相关的基因的表达水平显着下调,这表明可以抑制结合的转移设备。
摘要:非O1和非O139弧菌霍乱(NOVC)会引起人类胃肠道感染。被污染的食物,尤其是海鲜,是人类感染的重要来源。在这项研究中,从零售海鲜中分离出的63个NOVC菌株的毒力潜力在基因型和表型水平上被表征。尽管没有菌株编码霍乱毒素(CTX)和毒素调节的pilus(TCP),但包括Hlya Hymolysin,cholix Toxin CHXA,热稳定的肠毒素STN,以及针对3型和6型分泌系统编码的基因。所有菌株均表现出针对人和绵羊红细胞的溶血活性:90%(n = 57)形成强生生物膜,52%(n = 33)在37℃时高度运动,只有8%(n = 5)和14%(n = 9)可以抗拒60%和≥40%的人类血清。生物膜形成和毒素调节基因。CGMLST分析表明,来自临床NOVC菌株的海鲜簇的NOVC菌株。抗菌易感性测试(AST)导致对五种菌株的鉴定,这些菌株针对β-内酰胺类(包括青霉素,碳碳素,碳酸苯甲酸酯和头孢菌素),多酰氧蛋白,多酰氧蛋白和硫酰胺和硫酰胺的物质产生了非wildtype表型(中和耐药性)。表型抗性模式可以部分归因于在计算机分析中通过鉴定的获得的耐药性决定因素。我们的结果表明,从零售海鲜产品中分离出的分析的NOVC的毒力潜力差异,可以考虑进一步的致病性评估以及对未来海鲜监测中NOVC分离株的风险评估。
