摘要 - 情绪可以从一个人的步态(即他们的步行风格)中感知。关于步态情绪识别的现有方法主要利用姿势信息作为输入,但忽略了身体运动,其中包含互补信息,以识别步态中引起的情绪。在本文中,我们提出了一个双边姿势和运动图卷积网络(BPM-GCN),该网络由两个平行流组成,即姿势流和运动流,以识别两种观点的情绪。姿势流旨在明确分析人的情绪状态。具体来说,我们根据手工设计的功能设计了一种新颖的回归约束,以将先前的情感知识提炼到网络中并增强表示形式学习。运动流旨在描述情感的强度,这是识别情绪的隐含提示。为了实现这一目标,我们采用了一个高阶速度加速对来构建图形,其中使用了信息性运动功能。此外,我们设计了PM相互作用的特征融合机制,以适应两条流的特征。因此,这两个流从两个互补视图中协作为性能做出了贡献。在最大的基准数据集情绪基准上进行的广泛实验表明,BPM-GCN对最先进的方法表现出色(至少有4个。59%的绩效提高)。源代码在https://github.com/exped1230/bpm-gcn上发布。
•Bobi(Cardiff的聊天机器人)是我们为客户提供个性化自助技术的核心。Bobi将确保生产力,效率,更好的客户服务,节省成本和创新的方式,以24/7的基础建立我们的未来能力•网站是通往所有设备上的理事会服务的门户; information is easy to fnd and is up to date at all times • The Cardiff.gov app is easy to install with customer feedback and insight driving the service design • Customers can complete most tasks digitally from start to fnish without any need for intervention • Customers can get the support they need to access services digitally with an option for face to face and telephone services • Ensure language choice is accessible across all channels representing all communities • Develop a group of Customer & Digital Champions who will work with our staff and customers教育和促进客户和数字活动
可再生能源的地面源热泵(GSHP)系统已成为具有成本效益和环境可持续性的替代方案,用于在住宅,商业和公民建筑中供暖和冷却应用。但是,它们的延长运行可能导致土壤地热势及其热量失衡的下降。将热量存储(TES)系统与GSHP的集成可以通过平衡能源供应和需求来减轻这些问题,从而灵活地在高峰时段满足加热和冷却需求,从而在非高峰时段保留能量,并优化整体系统效率。近年来,在不同的操作条件和气候场景下研究了各种TES辅助的GSHP配置的实验,数值和理论研究显着增加。这些集成的系统可能会考虑不同的明智热,潜热和明智的热基于热的TES方法。在这种情况下,本文介绍了TES辅助GSHP系统最新进展的全面概述。这项工作的主要目的是弥合这些集成系统上的知识差距,对所采用的术语提供了清晰度,并突出了文献中介绍的不同配置的优势和缺点。本综述预计将为TES辅助GSHP领域的研究人员和分区者提供宝贵的见解,并指导该地区未来的研发工作,最终支持脱碳的热量(包括太空冷却)并实现零零目标。
人工智能 (AI) 方法和技术已被用于解决建筑、工程和施工 (AEC) 行业中的各种工程问题,旨在提高整体生产力并优化整个项目生命周期(规划、设计、施工和维护)的决策。然而,由于缺乏对固有不确定性的全面理解(从根本上和数学上),许多人工智能应用面临着不同的限制和约束,因此人工智能的使用尚未达到令人满意的水平。它需要采取不同的措施来应对不同类型的不确定性,这些不确定性因不同类型的应用而异。因此,本文回顾了 5 种流行的人工智能算法,包括主成分分析、多层感知器、模糊逻辑、支持向量机和遗传算法;然后研究这些人工智能技术如何通过减轻不确定性来协助决策过程,同时实现预期的高效率。本文回顾了每一种相关的技术、数学解释、导致不确定性的原因分析,并总结了一套指南和一个应用框架,用于优化 AEC 应用的知情不确定性。这项工作将为根本理解铺平道路,进而为在 AEC 领域正确应用 AI 技术以实现更好的整体性能提供宝贵的参考。
加的夫市议会 CYNGOR CAERDYDD 市议会:2024 年 7 月 18 日投资与发展声明 近期活动 尽管经济环境严峻,加的夫市议会仍在继续支持企业和投资,为全县各社区和所有商业部门(从技术型企业到第三部门组织)提供就业和机会。 经济发展团队支持了一家专门从事空间技术的大学衍生公司,该公司将在加的夫商业技术中心创造多达 20 个工作岗位,占地约 50,000 平方英尺。 市议会位于全市各地的车间和孵化空间也继续受到大量需求,这反映在其高入住率上。在九个车间,加的夫市议会的入住率为 91%。 经济发展部门还成功地将一家专门从事电动汽车维修的当地公司迁至 Lamby Way 车间,为该公司提供了急需的扩张能力并在绿色经济中创造就业机会。此外,该委员会还帮助促成了一项 2000 万英镑的投资,该投资对象是英国最大的钢铁回收公司 Celsa Steel UK 的卡迪夫工厂。这项投资将有助于提供质量和数量稳定的废金属,从而帮助优化公司电弧炉的效率,并减少二氧化碳排放和运营成本。经济发展部还通过向威尔士政府的“转型城镇贷款基金”申请来继续支持企业,并提供贷款资金来支持购买和翻新西布特街的一座二级保护建筑。这将保障该地产上现有企业的未来,并有助于创造更多的商业空间。出席郡政厅的议员们一定会注意到,与新卡迪夫竞技场的预启用工程相关的大规模开创性工程正在进行中。这标志着大西洋码头地区重建的重要里程碑,也是布特镇令人兴奋的新篇章的开始。
向分时电价 (ToU) 过渡已成为解决可再生能源系统安装增加所带来的电力系统挑战的一种有希望的解决方案。ToU 电价鼓励住宅采用电池储能系统 (BESS),通过在低价区间(例如中午)最大限度地利用能源存储来降低客户账单。但是,同时对 BESS 充电会影响负载的多样性,这可能导致违反配电网络约束。传统的网络管理采用保守的固定和静态功率限制,导致网络容量使用效率低下,因为它们没有考虑网络运行条件和 BESS 设施状态的变化。特别是,当部分 BESS 设施处于闲置状态时,这些方法不允许更高的进口限制。为了更好地将配电网容量分配给活跃的 BESS 设施(充电/放电),本研究引入了一个独立的存储运营商,通过采用时变和自适应功率限制来协调 BESS 控制操作。为此,提出了一种混合整数线性规划 (MILP) 算法,供存储运营商管理 BESS 设施,同时尊重网络约束和客户的期望账单。在每个时间步骤中,该算法根据预定义的线性函数决定活跃 BESS 设施的功率限制。这些函数是通过使用最佳功率流 (OPF) 离线生成的,以建立功率限制和活跃 BESS 数量之间的关系。在真实的约旦配电网中应用该算法证明了其有效性,与使用固定功率限制相比,它可以让更多的客户实现他们期望的账单。
超级电容器被公认为典型的储能设备,由于其高功率密度、快速充电能力和延长的循环寿命等令人印象深刻的特性,最近引起了人们的极大关注。然而,超级电容器有限的能量密度和低电容阻碍了其发展,限制了其在高性能储能设备中的进一步发展潜力[1,2]。电极材料对超级电容器电化学性能的深远影响已得到充分证实。常用的电极材料包括过渡金属氧化物、碳和导电聚合物。虽然碳材料表现出显着的循环稳定性,但它们通常产生相对较低的电容。该结果归因于存储机制,其涉及在电极表面产生双层电荷。相反,后两种电极材料通常比碳表现出更高的电容,这要归功于它们的存储机制,即在电极/电解质界面发生氧化还原反应[3]。因此,人们进行了广泛的研究,探索过渡金属氧化物在提高超级电容器的比电容和能量密度方面的潜力[4]。氧化铁(Fe 2 O 3)因其丰富的可用性、强大的理论能力和廉价的成本而引起了人们的极大兴趣[5]。然而,Fe 2 O 3 和许多其他金属一样,
已开展基础研究以了解固体表面附近振荡流的行为。这项工作最初是与西澳大利亚大学研究人员联合开展的一个项目的一部分,该项目由澳大利亚研究委员会全额资助。项目期间获得的结果提出了一种控制飞机机翼层流的新策略。目前,两名卡迪夫博士研究生正在跟进这项工作,资金来自工程和物理科学研究委员会。作为层流控制英国项目的一部分,还与伦敦帝国理工学院的研究人员合作研究了层流控制的其他方面。
Mike Gorman 和 Alun Preece 从头到尾都为这个项目做出了重要贡献,对项目产生了重大影响。Nicky Priaulx 是该项目的启发者之一。Darrin Durant 在所有与政治科学有关的问题上都提供了无私的帮助,尤其是对民主的分析。Charles Thorpe、Daniel Kennefick、Edgar Whitley、Jeff Shrager 和 Patrick Dahl 提供了有用的信息、想法和建议。许多研究过远程医疗咨询的研究人员帮助 Collins 完成了关于该主题的章节,但该章节并未收录在最后。如果没有 Riccardo Sapienza、Bill Barnes 和 Willow Leonard-Clarke,关于科学会议的部分充其量也只能是单薄得多。卡迪夫知识、专业知识和科学研究中心 (KES) 的会议在封锁期间转变为国际研讨会,定期提供见解和保证。四位匿名审稿人和第五位审稿人 Brian Martin(拒绝匿名)提出了非常有影响力的建议。我们的文字编辑非常勤奋,为我们避免了许多错误。这本书有六位作者,他们每个人都非常感谢其他五位作者,因为在争论中很容易陷入僵局时,他们让这本书得以出版。
在进入2050年净净净的途中,英国政府通过与1990年级别相比,通过削减78%的排放来设定2035年的目标。为了帮助了解电气化的本地能源系统如何为该目标和相关成本做出贡献,我们开发了一个基于全系统的本地能源优化(LEO)模型。该模型捕获了一系列最先进的技术,包括构建织物改造,电池存储,电动机,电加热,需求响应,分布式可再生以及点对点(P2P)能源交易。和该模型可以在成本和排放之间进行权衡评估,比较了两种系统操作模式,即面向成本和网格影响,并评估天气风险和资本成本假设的影响。威尔士的一个案例研究表明,(1)资本成本假设可导致当地能源系统的总成本差异高达30.8%; (2)以成本为导向的模式操作系统可以节省多达5%的成本,而面向网格的模式; (3)热泵的电加热在所有研究的技术中的优先级最高。总体而言,这项研究演示了如何通过整个系统融合到近期技术和商业模型的整个系统中,迈向脱碳的未来。