致谢:这项工作是在DLR技术部门资助的项目中进行的:长期储能存储系统(Smateas)熔融盐健康评估的智能技术
摘要 地质热能存储 (GeoTES) 利用地下储层来存储和调度能源,以满足可以跨越整个季节的特定需求计划。能源输入可以有多种来源/形式;在本文中,我们研究了 1) 结合太阳能热混合和使用枯竭的油气储层的 GeoTES 技术,以及 2) 结合由过剩可再生电力充电的热泵和使用低温浅层储层的 GeoTES 技术。对于每种 GeoTES 技术,我们都会对候选储层进行适用性分析,开发初步的技术经济模型,并通过选定的案例研究验证该模型。本文概述了我们在关注主题上的技术进展,旨在促进 GeoTES 技术在未来能源市场中得到更广泛的接受。
预计,许多国家未来能源供应将以可再生能源发电为主,这将导致对灵活性选项的需求增加。卡诺电池提供了满足这种灵活性需求的技术前提条件,而且相对容易扩展。本文通过结合能源系统优化模型 REMix 和基于代理的电力市场模型 AMIRIS,研究了卡诺电池未来的经济潜力。REMix 评估能源系统成本最低的基础设施配置以及卡诺电池在其中的作用,而 AMIRIS 则关注这些存储系统的相应盈利能力。建模链应用于 2050 年中欧零排放能源系统的案例研究。为了为有前景的技术开发提供指导,对该系统进行了卡诺电池成本和效率的参数扫描。我们发现,从能源系统设计的角度来看,低成本存储介质的可用性是使用卡诺电池的关键驱动因素。此外,与电化学电池系统相比,卡诺电池与风能的结合具有更长的存储时间,因此具有优势。卡诺电池运营商可以实现正年度毛利润,这取决于系统设计、其在能源系统中的指定角色,尤其是其市场力量和竞标策略等因素。我们得出的结论是,必须充分利用卡诺电池的发展潜力,使其在更大范围内与其他存储技术竞争。
Humbert G,Sciacovelli A,《能源存储杂志》 2023; 64:107132。ge r,[..],Sciacovelli A,应用热工程,2020; 180:115878; Pizzolato,[…],Sciacovelli A,Energy 2020; 203:114797。
这些结果表明,GeoTES 适合储存大量能源。大型能源储存可用于在短时间和长时间内调度电力。因此,GeoTES 可能提供一系列能源储存服务,包括负荷转移、套利、电网可靠性、能源容量和季节性储存。GeoTES 有许多不同的配置,具体取决于能源来源、储层特征和当地能源市场。例如,以前的研究考虑储存由抛物面槽式集热器产生的太阳能热能,这将适用于太阳辐照度高的地区(Sharan 等人,2020 年)。还可以设想使用电加热器或热泵将多余的电力转化为热能。其他合适的能源包括工业过程产生的废热。
摘要:随着能源部门脱碳的努力,电力需求不断增长,其中大部分将由碳中和未来的可再生能源提供。为了平衡大多数可再生能源固有的可变性,需要某种形式的能源储存。在本文中,简要回顾了当前的系统,特别关注卡诺电池,其运行特性、长寿命和低环境足迹使其在日常能源储存方面具有竞争力。开发了一个瞬态模型来模拟卡诺电池的完整运行,该电池由蒸汽压缩热泵和有机朗肯循环以及显热储存组成。确定了关键性能参数,并通过平衡 25 种存储温度范围和热交换器夹点配置的成本和性能进行了帕累托优化。结论是,更宽的存储范围和更高的夹点可以降低成本,因为它们会减小水箱和热交换器的尺寸,并降低效率,因为会为热泵和热机产生不利的温度梯度。确定了一个帕累托前沿,它由 10 种配置组成,这些配置可以优化一个标准,或者平衡两个或多个标准,并得出关于每种配置适用性的结论。
• 成功设计、建造和测试了热泵、能量存储和 ORC • 原型在 DLR 实验室中组合并成功调试 • 即将对该 CHEST 实验室系统进行广泛的实验测试
摘要 卡诺电池被认为是一种有前途的适用于中型和大型应用的电-热-电存储技术。最近,有人提出在卡诺电池中使用两用热机。在这样的系统中,单个装置在充电期间充当热泵(HP,压缩机操作)或在放电期间充当有机朗肯循环(ORC,膨胀机操作)。与使用两台独立机器的传统卡诺电池相比,这种配置降低了该技术的投资成本。已经在小型(1 kW el)卡诺电池中试工厂使用单个涡旋压缩机/膨胀机进行了实验活动。在充电和放电模式下都测试了广泛的操作条件。讨论了系统电荷对两种操作模式下可获得工作点的影响。研究发现,在 HP 模式下运行系统所需的系统电荷低于 ORC 模式。在这些低电荷下,增加 HP 模式下的电荷对系统在较高源温和散热器温度下的性能有积极影响。在 ORC 模式的较高电荷下,发现增加系统电荷对研究的运行范围内的系统启动有积极影响。除了定性讨论外,还对系统和涡旋机进行了定量研究。
我们基于开放量子动力学理论研究了量子卡诺发动机的效率。该模型包括用于控制等温和等熵过程的子系统以及控制这些过程之间转变的系统-浴 (SB) 相互作用的时间相关外部场。在不同循环频率下,使用这些场下的分层运动方程,在非微扰和非马尔可夫 SB 耦合机制下进行数值模拟。严格评估了应用于整个系统的功和与浴交换的热量。此外,通过将准静态功视为自由能,我们首次计算了量子热力学变量并使用热力学功图分析了模拟结果。对这些图的分析表明,在强 SB 耦合区域,SB 相互作用的场是主要功源,而在其他区域,子系统的场是功源。我们发现,在准静态情况下可实现最大效率,并且效率仅由浴温决定,与 SB 耦合强度无关,这是卡诺定理的数值表现。由 AIP Publishing 独家授权发布。https://doi.org/10.1063/5.0107305