ifp Energies Nouvelles,Institut Carnot Ifpen Transpert Energie,69360 Solaize,法国B IGSI,17041年,法国La Rochelle,法国C大学。Grenoble Alpes,CEA,Litten,校园INES,73375 Le Bourget du Lac,法国D Univ。波尔多,CNRS,波尔多INP,IMS,UMR 5218,F-33400 TALENCE,FRANCE E UNIV。eiffel,entpe,licit-eco7,F-69675,法国里昂,法国f compi o egne University egne,roberval(力学,能源和电力),Royallieu Research Center,CS 60319,6020203 Et Orvanne Cedex,法国H武器的埃里拉(G´Ererage of Artage),60 Boulevard du g´er Martial Valin,CS 21623,75509 Paris Cedex 15,法国I SIEMENS Digital Industries Software,19 Boulevard Jules Carteret,69007 Lyon,France j valeo Systems,louars j valeo Systerm,80 7 Verri`
经典发动机将热量从热源转移到冷源,方法是使用工作物质 (WS) 将热量依次与每个热源接触。这种热的上游流动在热力学上增加了发动机的熵。在此过程中,自然会限制发动机的最大效率,该效率不能超过由两个热源的温度比决定的理想值。卡诺于 1824 年证明了这一极限,体现了热力学第二定律。量子发动机可以通过重新调整其基本概念来超越这一限制。理论 [1–4] 和实验 [3,5–7] 都表明,可以从量子系统中获取额外的工作能力,称为“能效”。理论上,这些发动机的运行可以分为“冲程”,以模仿自然界的最小作用原理。[3] 冲程的作用以其持续时间和速率为特征
2019 年,荷兰埃因霍温理工大学开发了一种隧道二极管,允许输入 2.4 GHz 的 −25 至 −10 dBm 微波功率,与传统 SBD 相比,隧道二极管具有更高的 RF-DC 转换效率。使用由卡诺极限确定的高阻抗(Q 匹配电路)天线也可以获得高 RF-DC 转换效率。利物浦大学开发了一种阻抗 >400- Ω 的低功率宽带整流天线,它在 0.9-1.1 GHz 和 1.8-2.5 GHz 之间实现了 75% 的 RF-DC 转换效率。 2016 年,日本金泽工业大学设计了一种 1.6k 高阻抗整流天线,用于收集 500MHz 的数字电视信号,在 -15dBm 的 RF 功率输入下可获得 49% 的 RF-DC 转换效率,在 -30dBm 的输入功率下可获得 8.7% 的效率
本研究引入了用于热化学储能的反应性碳酸盐复合材料 (RCC) 的新概念,其中 BaCO 3 -BaSiO 3 混合物可成功实现 BaCO 3 的热力学不稳定,并具有中等循环稳定性 ~ 60 %,接近考虑非反应性杂质时的理论最大值。本研究提出了一种替代熔盐储能技术,该技术可在更高温度 (850 °C) 下运行,因此可在具有竞争力的价格水平下保持更高的卡诺效率,从而能够开发出比最先进技术更有利的热能存储系统。最后,在 RCC 中添加催化量的 CaCO 3 可显著改善反应动力学(一个数量级),这是通过形成中间体 Ba 2- x Ca x SiO 4 化合物实现的,据推测,这些化合物可通过诱导晶体缺陷促进 Ba 2+ 和 O 2- 的迁移。
德国纽伦堡能源园区建造并研究了一种新型泵式热能存储 (PTES) 系统,该系统配有热泵 (HP) 和有机朗肯循环 (ORC)。其基本思想是,白天的剩余电力通过 HP 转换为热量,并储存在显热热水储能器中。这使得光伏电力等可以从白天转移到晚上,因为存储的热量可以在晚上通过 ORC 转换回电能。为了检验该系统的经济效率,使用 AnyLogic 模拟软件建立了动态模拟。对于一个拥有 40 户人家的小社区,结果表明,在目前的德国市场条件下,如果不大幅降低 PTES 的成本,就不可能实现经济使用。然而,考虑到德国上网电价发展的当前趋势,未来几年内将有可能实现经济使用。关键词:储能、卡诺电池、泵式热能存储、动态模拟、经济评估
对净零排放的追求催化了碳捕获、储存和利用 (CCUS) 计划的发展。传统的 CO2 捕获技术,尤其是那些采用胺基溶液处理发电厂排放的技术,由于其在热再生过程中的大量能源需求和与卡诺极限相关的低效率,正在被重新评估。为了寻求更可持续的替代方案,本研究深入研究了新兴的电化学碳捕获浓缩 (eCCC) 系统领域。这些新系统在环境条件下运行,适用于可再生能源,有可能减少碳捕获过程的能源足迹。我们研究的核心是利用 pH 波动技术对 sp2 胺进行电化学 CO2 封存的计算设计和分析。我们研究了 sp2 胺分子,这些分子以其氧化还原活性为特征,研究它们在 eCCC 中的效用,评估了它们的溶解度、与水环境的氧化还原电位兼容性以及它们的电化学反应的可逆性。人工智能在计算分子筛选中的整合进一步完善了选择过程,精准定位最有可能提高 eCCC 技术效率和可扩展性的候选药物。
Subhasish Mitra拥有斯坦福大学电气工程和计算机科学系的William E. Ayer Endowed主席职位。他指挥Stanford Robust Systems Group,由美国芯片和科学法资助的微电子Commons Commons Commons Commons Commons的领导团队领导,领导Stanford Systemx Alliance的计算焦点领域,并且是斯坦福计算机科学的副主席(教职员工)。他的研究范围跨越了强大的计算,纳米系统,电子设计自动化(EDA)和神经科学。他的研究小组的结果影响了几乎每个当代电子系统,并激发了多个国家的重要政府和研究计划。他曾在法国的CEA-LETI举行了几个国际学术任命 - 瑞士CEA-LETI的纳米系统卓越主席,瑞士EPFL的教授以及日本东京大学的访客教授。Mitra教授还咨询了主要技术公司,包括思科,Google,Intel,Merck(EMD Electronics),Samsung和Xilinx(现为AMD)。Mitra教授还咨询了主要技术公司,包括思科,Google,Intel,Merck(EMD Electronics),Samsung和Xilinx(现为AMD)。
摘要:德国有1454个地区供暖系统。其中大多数是基于化石的,并且具有高温水平,这既不有效,也不是可持续的,需要更改以达到2050年的气候目标。在本文中,我们提出了一个案例研究,用于转换高温至低温区供暖系统,该系统更适合可再生能源供应。使用Carnot工具箱,模拟了潜在区域加热系统的动态模型,然后转换为低温供应。进行灵敏度分析以查看系统性能,以防空间限制了转换。最后,进行了经济比较。结果表明,从技术上讲,可以执行转换直至非常低的温度系统。使用分散的可再生能源,分散的热储罐以及在每个建筑物上放置热泵的位置是实现转化的关键点。关于敏感性分析,在参考案例中分别将季节性存储和太阳能集合尺寸的尺寸降低到其值的60%和80%之前,转换值得进行。但是,经济分析表明,高度有效的低温可再生热网络很难与基于集中的化石CHP解决方案与地区供暖系统竞争。因此,尽管在技术上可以进行转型,但仍需要改变现有的经济方案和政策,以促进热量部门的可再生能源政策。
区域(2.5-25 毫米)。这将有助于实现适当的光谱选择性(a/e),这是评价 SSA 组成材料的参数。4 第二个要求是它的工作温度。事实上,目前 SSA 的最大工作温度限制在 600 1 C,因为超过此温度其组件就会退化。5 这严重限制了 CSP 对太阳辐射光热转换的充分利用。更高的工作温度(通常为 900 1 C )将提高发电系统的热电转换效率,而该效率受卡诺效率的限制;Zc=1Tc/Th,其中 Th 是工作温度,Tc 是环境温度6,6 从而提高了 SSA 的效率。碳化硅 (SiC) 为高温应用提供了独特的特性,可与其他 CSP 系统的工作条件兼容。 7 它重量轻,导热系数高,抗热震性能优良,强度高,氧化时能形成钝化氧化层,具有抗氧化性能,热稳定性可达B 1400 1 C。7-9
区域(2.5-25 毫米)。这将有助于实现适当的光谱选择性(a/e),这是评价 SSA 组成材料的参数。4 第二个要求是它的工作温度。事实上,目前 SSA 的最大工作温度限制在 600 1 C,因为超过此温度其组件就会退化。5 这严重限制了 CSP 对太阳辐射光热转换的充分利用。更高的工作温度(通常为 900 1 C )将提高发电系统的热电转换效率,而该效率受卡诺效率的限制;Zc=1Tc/Th,其中 Th 是工作温度,Tc 是环境温度6,6 从而提高了 SSA 的效率。碳化硅 (SiC) 为高温应用提供了独特的特性,可与其他 CSP 系统的工作条件兼容。 7 它重量轻,导热系数高,抗热震性能优良,强度高,氧化时能形成钝化氧化层,具有抗氧化性能,热稳定性可达B 1400 1 C。7-9