©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
中心体是无膜细胞器,通过充当Mi-Crotubule组织中心来策划各种生物学功能。在这里,我们报告说,caspase-2驱动的细胞凋亡是在失败的cy- Tokinesis失败的血细胞中引起的,并且需要额外的中心体来触发这种细胞死亡。caspase-2的激活取决于Piddosome多蛋白复合物,而PIDD1在额外的中心体上的启动对于途径激活是必需的。因此,其中心体适配器ANKRD26的损失允许细胞存活和无限制的多酶化,以响应细胞因子衰竭。从机械上讲,细胞死亡是通过caspase-2介导的Bcl2家族蛋白出价的加工来开始线粒体上游的,驱动Bax/Bak依赖性的线粒体外膜透化(MOMP)。值得注意的是,竞标细胞通过参与caspase-2引发的p53依赖性促凋亡转录反应来实现凋亡。始终如一,出价和MDM2作为共享caspase-2底物的作用,而竞标受到动力学偏爱。我们的发现证明了中心体的lim-通过诱导piddosome驱动的线粒体细胞凋亡,以避免避免致病性的多倍体化事件,从而通过其自身的外部重复。
caspase-2用额外的中心体达里奥·里佐托(Dario Rizzotto)1†,Vincenza Vigorito 2†,Patricia Rieder 1,Filip Gallob 1,Gian Mario Moretta 2,Claudia Soratroi 3,Joel S. Riley 3,Florian Bellutti 2,Steplano li veli li veli 2,liia liia ia ia ia, Sebastian Herzog 3,击败C. Bornhauser 4,Etienne D. Jacotot 5,6; Andreas Villunger 1,3 *&Luca L. Fava 2 * 1奥地利科学学院CEMM分子医学研究中心,1090年,奥地利维也纳。2蜂窝,计算和综合生物学系细胞分部的武装 - 哈尔维德实验室,意大利特伦托大学特伦托大学。3 Innsbruck的生物中心发育免疫学研究所,Innsbruck,6020,奥地利因斯布鲁克。 4瑞士苏黎世大学儿童医院肿瘤学和儿童研究中心,瑞士8032。 5 Inserm U1268,药物化学和翻译研究。 巴黎,法国F-75006。 6AccultédePharmacie,UMR 8038 Citcom,巴黎大学,巴黎,F-75006,法国。 †这些作者对这项工作做出了同样的贡献‡目前的地址:瑞士巴塞尔市的弗里德里希·米沙尔生物医学研究所(FMI)。3 Innsbruck的生物中心发育免疫学研究所,Innsbruck,6020,奥地利因斯布鲁克。4瑞士苏黎世大学儿童医院肿瘤学和儿童研究中心,瑞士8032。 5 Inserm U1268,药物化学和翻译研究。 巴黎,法国F-75006。 6AccultédePharmacie,UMR 8038 Citcom,巴黎大学,巴黎,F-75006,法国。 †这些作者对这项工作做出了同样的贡献‡目前的地址:瑞士巴塞尔市的弗里德里希·米沙尔生物医学研究所(FMI)。4瑞士苏黎世大学儿童医院肿瘤学和儿童研究中心,瑞士8032。5 Inserm U1268,药物化学和翻译研究。巴黎,法国F-75006。6AccultédePharmacie,UMR 8038 Citcom,巴黎大学,巴黎,F-75006,法国。 †这些作者对这项工作做出了同样的贡献‡目前的地址:瑞士巴塞尔市的弗里德里希·米沙尔生物医学研究所(FMI)。6AccultédePharmacie,UMR 8038 Citcom,巴黎大学,巴黎,F-75006,法国。†这些作者对这项工作做出了同样的贡献‡目前的地址:瑞士巴塞尔市的弗里德里希·米沙尔生物医学研究所(FMI)。运行标题:额外的中心体触发MOMP关键字:中心体,凋亡,piddosome,p53,p53,bcl2家族 *通讯:通讯教授:安德烈亚斯·维伦格(Andreas Villunger)教授,博士学位发展免疫学研究所,医学院医科大学 +43-512-9003-70380Fax: +43-512-9003-73960 Email: andreas.villunger@i-med.ac.at ORCID:0000-0001-8259-4153 OR Prof. Luca Fava, PhD Email: luca.fava@unitn.it Armenise-Harvard Laboratory of Cell Division Department of Cellular,计算和综合生物学 - 科比奥,特伦托大学通过Sommarive9,38123 Trento,ph:+390461285215电子邮件:luca.fava@unitn.it orcid:0000-0002-6741-1723
摘要:传统上,Caspase-9 被认为是内在凋亡途径的启动蛋白酶。然而,在过去十年中,除了启动/执行细胞死亡之外,还描述了其他功能,包括细胞类型依赖性的增殖、分化/成熟、线粒体和内体/溶酶体稳态调节。由于先前的研究揭示了 caspase 在成骨和骨稳态中的非凋亡功能,因此进行了这项研究以识别小鼠 MC3T3-E1 成骨细胞中 caspase-9 敲除导致失调的蛋白质和途径。使用数据独立采集 - 并行累积连续碎片 (diaPASEF) 蛋白质组学来比较对照和 caspase-9 敲除细胞的蛋白质谱。总共量化了 7669 个蛋白质组,其中 283 个上调/141 个下调蛋白质组与 caspase-9 敲除表型相关。失调的蛋白质主要富集在与细胞迁移和运动以及 DNA 复制/修复相关的蛋白质中。在 MC3T3-E1 细胞中,通过基因和药理学抑制 caspase-9 证实了迁移的改变。ABHD2 是一种已确定的细胞迁移调节剂,被确定为 caspase-9 的可能底物。我们得出结论,caspase-9 可作为成骨细胞 MC3T3-E1 细胞迁移的调节剂,因此可能参与骨重塑和骨折修复。关键词:ABHD2、Caspase 9、diaPASEF、迁移、成骨细胞、蛋白质组学 ■ 简介
背景:CHO 细胞是生产生物制药的首选,而基因组编辑技术为提高重组蛋白产量提供了机会。靶向凋亡相关基因,如 Caspases 8 相关蛋白 2 (CASP8AP2),可提高 CHO 细胞的活力和生产力。将强大的策略与 CRISPR-Cas9 系统相结合使其能够应用于 CHO 细胞工程。目标:本研究旨在开发一种经济有效的方案,使用 CRISPR-Cas9 系统结合 HITI 策略同时在 CHO 细胞中缺失/插入 CASP8AP2 基因,并评估其对细胞活力和蛋白质表达的影响。材料和方法:我们通过将 CRISPR/Cas9 与 HITI 策略相结合,开发了一种有效的 CHO 细胞工程方案。使用 CHOPCHOP 软件设计了两个不同的 sgRNA 序列以靶向 CASP8AP2 基因的 3' UTR 区域。使用经济高效的 PEI 试剂将 gRNA 克隆到 PX459 和 PX460-1 载体中,并转染到 CHO 细胞中。采用手动选择系统简化单细胞克隆过程。MTT 测定评估 24、48 和 72 小时的基因沉默和细胞活力。流式细胞术评估 CASP8AP2 沉默的 CHO 细胞中的蛋白质表达。结果:研究证实了将 CRISPR-Cas9 与 HITI 策略相结合的稳健性,在产生敲除克隆方面实现了 60% 的高效率。PEI 转染成功地将构建体传递给近 65% 的克隆,其中大多数是纯合的。该方案被证明适用于资源有限的实验室,只需要倒置荧光显微镜。 CASP8AP2 敲除 (CHO-KO) 细胞经 NaBu 处理后,与 CHO-K1 细胞相比,其细胞存活率显著延长,48 小时时的 IC50 值分别为 7.28 mM 和 14.25 mM(P 值:24 小时 ≤ 0.0001,48 小时 ≤ 0.0001,P 值:72 小时 = 0.0007)。与天然细胞相比,CHO CASP8AP2 沉默细胞的 JRed 表达增加了 1.3 倍。结论:使用 CRISPR-Cas9 和 HITI 策略有效改造 CHO 细胞,同时进行 CASP8AP2 基因缺失/插入,从而提高细胞存活率和蛋白质表达。
抽象背景抗塑性化学疗法在引起免疫原性死亡(ICD)时非常有效,从而诱导抗肿瘤免疫反应甚至消除肿瘤。然而,激活的胱天蛋白酶是大多数癌症化学治疗剂的标志,使凋亡在免疫学上保持沉默。它们是否对于化学疗法诱导的细胞死亡和体内细胞的凋亡清除率仍然难以捉摸。方法进行了基于理性细胞的抗癌药物库筛查,以探索在凋亡caspase抑制下的免疫原性凋亡途径和治疗靶标。基于这种筛选,caspase抑制在增强化学疗法诱导的抗肿瘤免疫力和作用机理方面的潜力通过各种细胞和小鼠模型研究了。结果热休克蛋白90(HSP90)抑制激活肿瘤细胞中的胱天蛋白酶,产生丰富的基因组和线粒体DNA片段,并导致细胞凋亡。同时,它劫持了caspase-9信号传导以抑制固有的DNA感应。Pharmacological blockade or genetic deletion of Caspase-9 causes tumor cells to secrete interferon (IFN)- β via tumor intrinsic mitochondrial DNA/the second messenger cyclic GMP–AMP (cGAS) /stimulator of interferon genes (STING) pathway without impairing Hsp90 inhibition-induced cell death.重要的是,CASPASE-9和HSP90抑制均可触发ICD,从而释放了许多损伤相关的分子模式,例如高摩动式组盒蛋白1,ATP和I型IFN和IFNS型IFN在体外和显着的抗肿瘤效应。此外,联合处理还通过上调编程的死亡配体1(PD-L1)来诱导适应性抗性。其他PD-L1阻滞可以进一步克服这种获得的免疫阻力并实现完全的肿瘤回归。结论caspase-9信号传导有选择地挑衅基于HSP90的化学疗法介导的肿瘤先天感应,从而导致CD8 + T细胞依赖性肿瘤控制。我们的发现暗示胱天冬酶途径的药理调节增加了化学疗法诱导的凋亡的肿瘤内在感应和免疫原性,
非规范式浮游物质是一种信号传导,对于抗胞质革兰氏阴性细菌的细胞防御至关重要。人类非规范式浮游路径的关键步骤涉及在该复合物中释放caspase-4的蛋白水解活性。caspase-4通过裂解Gasdermin-D(GSDMD)引发炎症,从而诱导炎症反应。但是,激活caspase-4并控制其裂解底物的能力的分子机制仍然很差。caspase-11,caspase-4的鼠类对应物,通过形成二聚体在D285时以D285的形式裂解GSDMD,从而获得了非规范性渗透性的蛋白酶活性。这些切割事件通过NLRP3 - ASC - caspase-1轴触发信号传导,导致Pro-IL-1β细胞因子前体的下游裂解。在这里,我们表明caspase-4第一个二聚体在两个位点(D270和D289)在间接头上的两个位置进行自我切割,以获取完整的蛋白水解活性,裂解GSDMD,并诱导细胞死亡。令人惊讶的是,D289处的caspase-4二聚体和自切解产生了直接裂解pro-IL-1β的caspase-4 p34/p9蛋白酶,从而独立于原代人髓细胞和上皮细胞中的NLRP3炎症体,从而导致其成熟和分泌。我们的研究因此阐明了caspase-4的浮游生物和鉴定为caspase-4的自然底物的关键分子事件。
背景 .由于晚期宫颈癌的治疗手段不具特异性以及缺乏分子靶向药物,晚期宫颈癌的治疗仍具有较大的挑战性,寻找新的宫颈癌治疗生物标志物十分必要。方法 .本研究通过转染携带KIN17 siRNA的重组慢病毒载体,构建kin17敲低的宫颈细胞株HeLa和SiHa,并用嘌呤霉素进行筛选。通过荧光观察和蛋白质印迹法检测建立的kin17敲低细胞。流式细胞术检测细胞凋亡和线粒体膜电位(MMP)。分光光度法检测caspase 3酶活性。蛋白质印迹法分析凋亡相关蛋白的表达谱。最后,我们利用生物信息学和蛋白质组学数据分析宫颈癌中的KIN相关基因。结果 .结果显示,转染基因沉默载体的HeLa和SiHa细胞中kin17的荧光阳性率较高(> 90%),基因沉默效率较高(> 65%)。此外,kin17的缺失分别使HeLa和SiHa细胞的MMP降低和凋亡率增加。此外,敲低kin17可以增强HeLa和SiHa细胞中caspase 3酶活性,增加裂解PARP和Bim的表达,同时降低Bcl-xL和磷酸化BAD的表达。宫颈癌KIN相关预后基因的鉴定显示,共构建了5个基因(FZR1、IMPDH1、GPKOW、XPA和DDX39A)用于该风险评分,结果显示CTLA4表达与风险评分呈负相关。结论。我们的研究结果表明,kin17 敲低可通过靶向 caspase 3、PARP 和 Bcl-2 家族蛋白促进宫颈癌细胞凋亡。此外,kin17 可以通过线粒体途径调控癌细胞凋亡,可作为调节宫颈癌细胞凋亡的新型治疗靶点。
调节的坏死是独立于caspase的一种新兴细胞死亡类型。最近,随着生物化学和遗传学领域调节坏死的发现,逐渐理解了调节坏死的基本分子机制和信号传导途径。如今,有几种受调节的坏死模式与癌症的启动和发育密切相关,包括坏死性,铁凋亡,parthanatos,Pyropttosis等。更多的是,积累的证据表明,各种化合物可以通过诱导癌细胞的调节坏死表现出抗癌作用,这表明与caspase无关调节的坏死途径是癌症管理中的潜在靶标。在这篇综述中,我们扩大了分子机制以及多种调节坏死模式的信号通路。我们还详细介绍了它们在肿瘤发生中的作用,并讨论如何将每个受调节的坏死途径靶向。