铸造和锻造组件位于国防部(国防部)关键武器平台的核心,为美国的战士准备提供了至关重要的贡献。自2000年以来,美国铸造厂数量减少了67%,美国的铸件和本金(CF)生态系统供应链正在逐渐减少。考虑到离岸和持续的经济逆风,其余的高质量的国内铸造者和遗产往往会优先考虑高量订单和客户。遗留平台的性质特别加剧了这个问题,旧平台的性质在很大程度上构思,定义和存储在纸上。与劳动力可用性的普遍挑战同时,国防部获得低量和锻造组件面临的挑战在地缘政治动荡中构成了关键而持久的问题。
3.10 孔洞。这种类型的孔洞,通常是圆形或椭圆形,也称为气孔、针孔和气孔。空洞的形式比较复杂,可能出现在铸件表面,可能是由于内部金属接触湿砂、湿冷物、干燥不充分的熔渣等时产生的蒸汽引起的。孔隙也可能是由于凝固过程中气体的释放造成的。如果空洞很小且分布很广,它们通常是无害的,但如果相对较大且出现在封闭区域,则应进行充分评估。GSS 孔洞可能非常危险,因为它会直接进入铸件的厚表面膜下,而这些铸件需要进行精确的表面处理,并且没有足够的清理材料。
规范场景 最常见的场景 - 规范中未注明工艺内焊接返工:已焊接、混合、热处理并通过所有图纸指定检查的铸件通常在尺寸、物理、化学、冶金和结构上符合图纸要求。因此,商业铸件中很少注明限制或记录工艺内焊接返工表面缺陷的规范。同样,未按服务严重程度分类的军用或航空航天铸件通常也没有限制或记录工艺内焊接返工的规范。指定 AMS 2175(铸件分类和检验)的场景:对于军用和航空航天铸件,在 AMS 2175 中,铸造部件服务的严重程度分为 1 至 4 级,表面和/或内部完整性指定为 A 至 D 级。不同等级需要不同级别的无损检测取样,以验证是否符合指定的完整性等级。值得注意的是,等级与分类铸件高应力表面的循环寿命直接相关。AMS 2175 涵盖了几乎所有铸造工艺和全系列铸造合金,因此它也被用作安全关键铸件的商业标准,SAE 2175 与之相同。重要的是,AMS 2175 没有提及过程中焊接返工,仅规定 A 至 D 级缺陷的程度在射线照相、磁粉、模具渗透检测和/或目视检查中为“分级”。这是在所有铸件精加工过程(包括最终热处理)完成后进行的检查。这些精加工过程包括过程中焊接返工(如果适用)。无论是否焊接,通过指定等级都表明铸件设计的允许转换应力将实现预期的循环寿命。相反,不良的过程中焊接返工将导致表面和/或地下迹象无法通过指定完整性等级的测试。单击此链接“工艺中焊接返工规范和属性数据”,获取铝合金和镁合金最终热处理后焊接与铸态母合金的静态、循环和断裂韧性数据。工艺中焊接返工受到限制或必须记录的情形:使用 AMS 2175 来确保与循环寿命设计意图直接相关的表面和内部完整性,限制或要求记录工艺中焊接返工是一种不必要的“安全带加吊带”预防措施。例如,AMS-A-21180(高强度铝合金铸件)允许调用“无焊接区”或“仅在获得购买者书面许可的情况下进行焊接返工”。可能需要显示焊缝位置、尺寸和深度的地图
▪ 在设计凯迪拉克 Celestiq 的底盘框架时,通用汽车采用了所谓的“超精密砂型铸造”技术,通用汽车官员表示,该技术在小批量应用中具有成本和设计灵活性优势。▪ 通用汽车的整个下部结构结合了六个相当大的铸件,包括连接到两个 8 英尺长(2.5 米)铸件的前后结构,这些铸件通过粘合剂粘合并点焊到单个底盘上。▪ CELESTIQ 底盘包括六个大型精密砂型铸造铝部件。▪ 与典型的冲压结构相比,每个铸件可减少 30 到 40 个部件。▪ 其优点是更有效地利用空间、简化结构并提高结构刚度。▪ CELESTIQ 精密砂型铸造材料和工艺非常适合小批量、手工定制的车辆。
▪ 在设计凯迪拉克 Celestiq 的底盘框架时,通用汽车采用了所谓的“超精密砂型铸造”技术,通用汽车官员表示,该技术在小批量应用中具有成本和设计灵活性优势。▪ 通用汽车的整个下部结构结合了六个相当大的铸件,包括连接到两个 8 英尺长(2.5 米)铸件的前后结构,这些铸件通过粘合剂粘合并点焊到单个底盘上。▪ CELESTIQ 底盘包括六个大型精密砂型铸造铝部件。▪ 与典型的冲压结构相比,每个铸件可减少 30 到 40 个部件。▪ 其优点是更有效地利用空间、简化结构并提高结构刚度。▪ CELESTIQ 精密砂型铸造材料和工艺非常适合小批量、手工定制的车辆。
第 1 节。一般····················································································································· 3 第 2-1 节。轧制钢材·········································································································· 7 第 2-2 节。轧制钢材半成品··········································································· 14 第 2-3 节。用于高热输入焊接的轧制钢材 ····························· 16 第 3 节。钢管 ································································································ 18 第 4 节。铸件和钢锻件 ·· ...第 5 节。特殊要求的曲轴 ································································ 22 第 6 节。铝合金 ········································································································································· 25 第 7-1 节。铜合金铸件······························································································· 28 第 7-2 节。铜和铜合金管 ··············································································· 29 第 8 节。特殊铸铁阀门 ·· ... ·· ...链条配件· ... ·· ... ·························································································· 50
•我们已经成功地原型并获得了众多迎合这些机会的组件的批准,其中一些原型已经达到了泡沫供应阶段。•在机车和铁路领域的工作也在进行。该公司已成为该领域大型OEM的重要供应链合作伙伴,拥有大量认可的组件组合。tier-1供应已经开始针对印度铁路的Amrit Bharat Express火车项目的组件,其中一些组件在原型阶段,有些已经在批量供应中。•本季度的另一个重要更新是董事会批准将降级子公司合并为Tamboli Castings。这一战略举动旨在增强运营协同作用,降低运营成本并简化合规性要求。•我们还致力于自己的碳 - 减少足迹计划,并正在积极过渡到更可持续的商业实践。
第 1 节。一般····················································································································· 3 第 2-1 节。轧制钢材··········································································································· 7 第 2-2 节。轧制钢材半成品··············································································· 15 第 2-3 节。用于高热输入焊接的轧制钢材 ····························· 17 第 3 节。钢管 ································································································ 19 第 4 节。铸件和钢锻件 ·· ...第 5 节。特殊要求的曲轴 ······························································· 23 第 6 节。铝合金 ··································································································································· 26 第 7-1 节。铜合金铸件······························································································· 29 第 7-2 节。铜和铜合金管 ············································································· 30 第 8 节。特殊铸铁阀门 ···················································································································· 34 第 9 节。锚·· ...船用链条附件···································································································· 39 第 10-3 节。海上链条和链条附件································································ 41 第 11 节。钢丝绳· ... ·· ... ···························································································· 55
(铝制产品,铝制铸件和木板以及铜卷产品)对HDD材料的需求预计将保持在先前的预测水平,以及数据中心行业的需求恢复趋势。对半导体材料的需求预计由于需求恢复的缓慢而对先前的预测有所减少。
加工和储存(指导值) 混合 称量(按重量或体积)Araldite 树脂和硬化剂。 将硬化剂添加到 Araldite 树脂中;确保将所需量的硬化剂转移到树脂中。 充分搅拌直至混合完成。 混合过程中的空气夹带会导致固化树脂中出现孔隙。 在真空下或计量混合机中混合是防止空气夹带的最有效方法。 或者,可以在真空室中对静态树脂 - 硬化剂混合物进行脱气——允许至少 200% 的空隙以使泡沫膨胀。 固化 混合树脂和硬化剂引起的化学反应会产生放热。 达到的峰值温度由起始温度和铸件的大小和形状决定。 未填充的树脂系统仅适用于制造重量不超过约 500 克的铸件。 生产大型铸件时,应添加矿物填料来散热并抑制放热反应。生产非常小的铸件或薄层时,放热反应非常少,因为产生的热量会迅速消散。因此固化会延迟,铸件表面可能仍然发粘。在这种情况下,应使用 40°C – 60°C 的红外加热器或烤箱进行完全固化。铸造厚部件时,需要特别小心,避免放热温度过度上升。除非对按照特定设计制造的铸件进行初步试验,并在指定的模具中不会产生不可接受的放热效应,否则不应使用短时间高温固化程序。要确定交联是否已完成以及最终性能是否最佳,必须对实际物体进行相关测量或测量玻璃化转变温度。客户制造过程中的凝胶和固化周期不同,可能导致交联程度不同,从而导致不同的玻璃化转变温度。储存条件将组件存放在室温干燥处,密封在原装容器中。在这些条件下,保质期将与标签上注明的有效期相对应。在此日期之后,产品只能在重新分析后进行处理。部分空的容器应在使用后立即盖紧。有关废物处理和火灾时分解的危险产物的信息,请参阅这些特定产品的材料安全数据表 (MSDS)。