这是:Maturi M.,Vetri Buratti V.,Casula G.,Locatelli E.,Sambri L.,Bonfiglio A.的最终同行评审的手稿。纳米母校。2021,4,8668–8673。
Paolo A. Ascierto,医学博士1MarioMandalà,MD,2,3 Pier Francesco Ferrucci,MD,Massimo Guidoboni,MD,5 Piotr Rutkowski,MD,Ph.D.,6 Virginia Ferraresi,Md Ika Richtig,医学博士,彼得罗·Quaglino(MD),MD,13CélesteLebbé,MD,Ph.D.,14 Hildur Helgadottir,MD,Ph.D。 AO,MD,博士,21 Alessandro Marco Minisini,MD,Ph.D.,22 Sabino de Placido,MD,Miguel F. Sanmamed,MD,Ph.D.,24 Milena Casula,Ph.D。 ICO Mallardo博士,1 Miriam Paone,MS,1 Maria Grazia Vitale,MD,1 Ignacio Melero,MD,Ph.D。Diana Giannarelli,MS,29 Giuseppe
1 帕尔马大学医院肿瘤内科和乳腺科,意大利帕尔马 43126; giulia.airo@unipr.it (GA); fabiana.prattico@unipr.it(FP); irene.testi@unipr.it (意大利); matilde.coriano@unipr.it (MC); benedetta.pellegrino@unipr.it (BP) 2 帕尔马大学医学和外科系,43121 帕尔马,意大利 3 GOIRC(意大利临床研究肿瘤学组),43100 帕尔马,意大利 4 肿瘤内科,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico,20122 米兰,意大利 5 肿瘤内科,AOU 卡利亚里,Policlinico Duilio Casula,09042 蒙塞拉托,意大利; czsolinas@gmail.com (CS) 6 卡利亚里大学医学肿瘤学,09124 卡利亚里,意大利 7 病理解剖学,实验室 Vald è s,81200 卡利亚里,意大利 8 阿姆斯特丹大学学术医学中心,阿姆斯特丹大学医学中心,1098 XH 阿姆斯特丹,荷兰 * 通讯地址:chiara.tommasi@unipr.it (CT); antonino.musolino@unipr.it (AM) † 这些作者对这项工作做出了同等贡献。
神经薄缠结是与AD相关的病理过程(Yokoyama等,2022)。这些病理特征有可能破坏突触和神经元活性,从而导致各种大脑区域的网络异常(Casula等,2022; Luo等,2023; Pless等,2023)。在AD患者的大脑中,已经检测到了各种神经生理特征,包括Preduneus Cortex(Casula等,2023)中的过度兴奋性和小脑皮质可塑性机制的损害(Di Lorenzo等人,2020年)。这些异常的神经活动可能导致AD中的神经元网络功能障碍,从而导致认知障碍。海马是用于记忆编码,存储和检索的关键大脑区域,是AD病理学影响的最早区域之一(Gillespie等,2016; Caccavano等,2020)。研究人员在神经振荡中检测到与在AD患者和动物模型的海马区域中使用脑电图或局部领域(LFP)记录(LOUX和UHLHAAS,2014; MILLER等,2018; JAFARI; JAFARI; JAFARI和KOLB)的20220; JAFARI和KOLB的2020;进一步探讨了它们在AD病理学背景下的作用,这揭示了在AD治疗中进行干预的潜在机会(Chan等,2021; Traikapi和Konstantinou,2021)。海马含有重要的中间神经元人群,在驱动神经元同步中起着至关重要的作用(Da Crugz等,2020; He He等,2021)。γ振荡与动物和人类的记忆和认知有关,并且可能在各种频率范围内都存在功能区别(Moby和Colgin,2018年)。特定的,缓慢的γ振荡(25 Hz -50 Hz)被认为可以增强海马内的记忆检索过程(Zheng等,2016),随着涉及较高记忆需求的任务中的慢速伽马活性增加了(Rangel等人,2016年)。海马锋利波纹波(SWR)在支持记忆合并和重播中起着重要作用(Buzsaki,2015; Katsuki等,2022)。SWR的破坏会损害记忆性能(Aleman-Zapata等,2022),而通过光遗传学刺激延长SWR的持续时间可改善迷宫任务期间大鼠的记忆力(Fernández-Ruiz等人,2019年)。研究表明,海马γ振荡和AD中的SWR缺陷(Hollnagel等,2016; Klein等,2016; Witton等,2016; Benthem等,2020)。神经刺激是一种神经调节的方法,涉及将刺激(例如电气,磁性,光学和超声)传递到选定的大脑区域,以调节局部和网络范围内的神经元活性(Yuan等,2020)。经颅磁刺激刺激(TMA)是一种非侵入性工具的创新形式,可以使用低强度集中的超声刺激静态磁场内特定的大脑区域(Yuan and Chen,2016; Wang等,2019)。在2003年,诺顿提出了在静态磁场中使用超声刺激的想法(Norton,2003)。由脑组织内部超声引起的离子颗粒的运动将在静态磁场下形成洛伦兹力,而TMA允许磁性声音电场和超声波的联合作用(Wang等,2016; Yuan等,2016; Yuan等,2016)。值得注意的是,即使在深脑区域,TMA也可以为由于
A. Vela SSS,3,布鲁斯·霍夫曼(Bruce Hoffman Ttt),3,伯纳德·蒙特罗(Bernard Monteiro ,2 ,2 , Finish Book, 2 , Gistlere 2 , 2 , Synnaeus, 2 , Astrid Acosta, 2 , Edwin Agudelo, , Ferdinand G. Have gggg,2 , André L. C. Cano hhh,2 2 2 2 2 2 2 2 2 2 2 2 2 , Lucelia N. Carvalho,2 , 2 , 2 2 , 2 , Murilo S. Tables mmm,2 , Carlos Are,2 ,卡罗来纳州R. C John G. Lundberg。 wwww,2,20,Lucia Rapp Py-Daniel F,2,Frank R. V Leandro M.