一些液态金属催化剂在其固体对应物中表现出令人着迷的活性。有时这些差异表现为更大的活性(例如液体GA - PT是三个数量级,比固体pt的甲醇氧化更为活跃),10或其他时间作为选择性差异(例如实心GA - SN对CO 2的降低不活跃,但液体产生的甲酸盐具有95%的Faradaic效率)。11这些液体金属的毫无原则的催化活性及其有希望的再生行为,使它们在长期的异质催化效果中是高度吸引人的进步。迄今为止,尽管某些密度功能理论(DFT)的研究为支持现场观察到的行为提供了其他证据,但过去的液态金属的绝大多数工作本质上都是实验性的。12,13相反,对于固体催化剂,DFT计算在诸如筛选新催化剂,14,15次映射吸附能和反应路径等区域中被广泛使用,以优化当前的催化剂,16,17,以及确定反应机制,反应机制和反应速率。18 - 20在将DFT应用于固体异质催化剂上时,通常根据该静态表面和附着物质之间的相互作用能量,在能量最小值和0 K,0 K,17,21,22计算中间状态的能源时进行典型的结构。虽然这可能是固体结构的明智假设,但试图将这些标准DFT方法应用于液态金属催化剂证明了challenting,因为它们无法说明“植物”液态金属表面的动态性质。此外,还有证据表明,在固体金属表面23和纳米颗粒的原子中的显着迁移。24这些动态被认为对金属表面重建很重要,但也在
硝化化合物,在许多工业应用中被广泛用作必需的化学中间体,由于其致癌性,诱变性和致病性特性而构成了明显的环境和健康风险。这些化合物是最持久的污染物之一,为环境修复提供了主要的挑战。传统的去除方法,例如吸附,臭氧化,生物修复和电化学过程,是有效的,特别是对于大规模应用。室温催化减少的最新进展是一种有希望的替代方案,这主要是由于其有效性和所得产物的相对较低的氨基苯酚(AP)的毒性相对较低,这是一种有价值的化学物质。近期对工业废水的全面利用引起了极大的兴趣。因此,探索相关的还原技术,包括在水性生态系统中含有有害物质的废物的回收,不仅是最基本的环境问题,而且对经济绩效至关重要。氮气减少的传统方法o c涉及使用有毒试剂和高能消耗的过程,这会带来显着的环境危害。审查确定了当前理解中的重要差距,例如氢源在还原过程中的确切作用,并强调了该领域进一步探索的必要性。这些进步有可能改善工业过程的经济生存能力和环境可持续性,特别是在废水回收和减少污染的背景下。发展高度有效的可持续催化剂对于选择室温催化减少技术至关重要,这不仅解决了与危险的硝化化合物有关的环境问题,而且对工业废水管理的更广泛挑战有助于。
CRISPR-Cas12a 是一种强大的 RNA 引导基因组编辑系统,它利用其单个 RuvC 核酸酶结构域通过顺序机制产生双链 DNA 断裂,其中非靶链的初始切割随后是靶链切割。目前尚不清楚空间上相距甚远的 DNA 靶链如何向 RuvC 催化核心移动。在这里,连续数十微秒的分子动力学和自由能模拟表明,位于 RuvC 结构域内的 α 螺旋盖通过锚定 crRNA:靶链双链并引导靶链向 RuvC 核心移动,在 DNA 靶链的移动中起着关键作用,DNA 切割实验也证实了这一点。在这种机制中,REC2 结构域将 crRNA:靶链双链推向酶的核心,而 Nuc 结构域通过向内弯曲来帮助靶链在 RuvC 核心内的弯曲和调节。了解 Cas12a 活性背后的这一关键过程将丰富基础知识并促进进一步的基因组编辑工程策略。
作为 CRISPR-Cas9 基因组编辑技术的核心,内切酶 Cas9 可在 DNA 中引入位点特异性断裂。然而,目前仍缺乏改善 Cas9 功能的精确机制信息。本文将多微秒分子动力学、自由能和多尺度模拟与溶液 NMR 和 DNA 裂解实验相结合,以解析靶 DNA 裂解的催化机制。我们表明,活性 HNH 核酸酶的构象与催化 Mg 2+ 紧密相关,揭示了其主要的结构作用。这种活性 Mg 2+ 结合的 HNH 通过分子模拟、溶液 NMR 和 DNA 裂解分析得到一致描述,同时还揭示了催化 H840 的质子化状态受到活性位点突变的强烈影响。最后,从头算 QM(DFT)/MM 模拟和元动力学建立了催化机制,表明催化作用由 H840 激活并由 K866 完成,从而使 DNA 裂解实验合理化。这些信息对于增强 CRISPR-Cas9 的酶功能以改进基因组编辑至关重要。
- 金属前体和还原方案对无选择性增强剂直接合成过氧化氢的无氯催化剂制备的影响,ChemCatChem,2016,8,1564-1574。 - 柔性聚合物基质在固定化纳米粒子催化转化中的独特作用,RSC Advances,2015,5,56181-56188。 - 用于直接合成过氧化氢的钯催化剂的原位 X 射线吸收精细结构光谱:在溴离子存在下金属相的浸出和还原,ChemCatChem,2015,7,3712-3718。 - 新型高表面积聚合物的干燥和膨胀状态形态,微孔和中孔材料,2014,185,26–29。 - 用于将甘油氢解为丙二醇的树脂基催化剂,Top. Catal.,2013,56,822–830。
该碳通过晶格的逐渐溶解最初会引起地下,最终引起块状碳化物。[12,29]对于炔烃半氢化反应,该PDC X相通过抑制对烷烃的过度氢化来提高对烷烃的选择性。[12,13,18,22,29]这种对选择性的影响是多方面的。首先,最大的层阻止氢填充地下。[13]此外,现有的溶解氢通过碳化物相的迁移率降低了。[22,12]最后,碳化物相增加了进料的进一步碳氢化合物的吸附。[29]在低转化率下,藻类的表面中毒作用也是高选择性的原因。[18]这种提高选择性的一些证明包括乙炔,丙烷和1-pentyne的半氢化。[12,22,28,29]
碳通过晶格逐渐溶解,最初形成亚表面,最终形成块状碳化物相。[12,29] 对于炔烃半加氢反应,PdC x 相通过抑制烷烃的过度加氢,提高了烯烃的选择性。[12,13,18,22,29] 这种对选择性的影响是多方面的。首先,最上层阻止氢气在亚表面聚集。[13] 此外,现有溶解氢通过碳化物相到表面的流动性降低。[22,12] 最后,碳化物相增加了从进料中吸附更多碳氢化合物的能垒。[29] 在低转化率下,炔烃的表面毒化作用也是高选择性的原因。[18] 选择性提高的一些实例包括乙炔、炔丙和 1-戊炔的半加氢。 [12,22,28,29]
仅催化在化学工业中的潜在未来影响,催化剂和相关过程的改善可能会节省13个Exajoules的能源和1千兆2的CO 2(到2050年),而与“商业与常态”的情况相比。*
Rajeev Ahuja 是瑞典乌普萨拉大学的计算材料科学教授。目前,他是印度理工学院 (IIT) 罗帕尔分校的校长。他是瑞典和印度被引用次数最多的研究人员之一。1992 年,他在印度 IIT Roorkee 获得博士学位。同年,他加入瑞典乌普萨拉大学担任博士后研究员。1996 年,他成为瑞典乌普萨拉大学的助理教授,2002 年成为副教授,2007 年成为教授。他的主要兴趣领域是计算材料科学,专注于能源应用,例如电池、氢气存储和生产、传感器和高压物理。他在同行评审期刊上发表了 1150 篇科学论文,H 指数为 103,i-10 指数为 795,引用次数超过 48,000 次。Ahuja 指导了 30 名博士生和 35 多名博士后。他被美国物理学会 (APS) 选为 FRSC(英国伦敦皇家化学学会院士)和 APS 院士,并被任命为英国皇家化学学会《材料化学 A》和《材料进展》杂志的顾问委员会成员。他是《纳米能源》的副主编。他还被授予 2017 年 APS 三月会议的 Beller 讲座教授职位。他曾获得瑞典皇家科学院 (KVA) 颁发的 2011 年 Wallmark 奖,此前还获得过 Eder Lilly & Sven Thureus 奖和 KVS 颁发的 Benzelius 奖。Ahuja 是瑞典皇家科学院 (KVS) 的当选成员。他因在 2021 年研究方面的卓越表现,被印度 IIT Roorkee 授予最佳校友奖。
在同一反应堆中进行多步反应的两个或多个催化剂同时进行串联催化,可以使(BIO)药物和纤维制造能够变得更加可持续。在此报告,在合成的共价有机框架胶囊中,金属纳米颗粒和生物催化系统的共晶型化合物COFCAP-2的作用像是人工细胞,因为该细胞在300-400 nm cavities/egress/egress/egress/egress中被捕获在300-400 nm nm cavities in cacy/egress中。2 nm窗口。首先将COFCAP-2反应器涂在电极表面上,然后用Dinitrogen作为原料来制备十一例同期胺。胺在水中的环境条件下以> 99%的对映体过量量制备,包括药物中间体和活性药物成分。重要的是,COFCAP-2系统通过保留性能进行了15次回收,解决了酶的相对不稳定性和较差的回收能力,这阻碍了其广泛的实施,从而有效,低废物的化学物质和(生物)药物。
