自然长期以来一直是化学领域中灵感的主要来源,它是设计具有熟练性能的材料的原型。在这篇特色文章中,我们介绍了探索多孔有机聚合物(POP)的努力,作为建造仿生材料的平台,以使新技术能够实现有效的转化和分子识别。在每个方面,我们首先介绍自然的化学基础,然后描绘出功能化流行音乐所涉及的原理和设计策略,以及材料的关键要求的摘要,最终在展示了流行音乐的独特特征。我们在使用POP来解决与仿生催化和吸附相关的基本科学问题上的努力随后进行了说明,以显示其对应用的巨大潜力和能力,从相关催化到放射性核素序列。得出结论,我们对这个新兴领域的挑战和机遇呈现了个人观点。
下面我们将证明 TCDC 方法成功应用于 2-炔基烯酮 1 与硝酮 2 的对映选择性串联反应,其中硝酮表现为亲核 1,3-偶极子,得到形式上的 [3+3] 环加成产物 3(方案 1b)。[14] 此外,我们证明这些串联环化/[3+3] 环加成可以作为多组分反应进行,通过羟胺 4 和醛 5 原位形成硝酮。该方法适用于广泛的芳基和烷基取代底物,克服了此类对映选择性反应的一些当前局限性。[14] 该方法依赖于一种新的 CPA-Phos 型配体,在有和没有活化银盐的情况下均可操作。DFT 计算提供了有关新 Au(I) 复合物在此反应中的行为的见解。
a 张振浩博士、Nazarii Sabat 博士、Angela Marinetti 博士、Xavier Guinchard 博士、巴黎萨克雷大学、法国国家科学研究中心、自然化学研究所、UPR 2301, 91198、Gif-sur-Yvette、法国。电子邮件:angela.marinetti@cnrs.fr; xavier.guinchard@cnrs.fr b 张振浩博士、Gilles Frison 博士 LCM、CNRS、巴黎综合理工学院、巴黎综合理工学院、91128 Palaiseau、法国。 c Dr Gilles Frison 索邦大学,法国国家科学研究院,理论化学实验室,75005 巴黎,法国 CPA-Phos 系列新型手性磷酸官能化膦的金(I)配合物可使醛、羟胺和环状炔烯酮之间发生对映选择性多组分反应,生成 3,4-二氢-1H-呋喃并[3,4-d][1,2]恶嗪。这是金(I)催化下高度对映选择性多组分反应的第一个例子。反应在低催化剂负载下进行,产率高,总非对映选择性和对映体过量高达 99%。可应用无银条件。该方法适用范围非常广泛,既适用于脂肪族和芳香族醛和羟胺,也适用于各种环状炔烯酮,以及炔烯酮衍生的肟。据报道,DFT 计算启发了对映体控制途径。
计算结果表明,电子催化策略显着降低了将N 2转换为AZO化合物的活化能。与非催化反应相比,该反应需要3.44 eV(在正常条件下几乎不可能),电子催化的途径将活化能降低至仅为0.14 eV,从而使反应在动力学上可行。此外,该策略表现出广泛的适用性,扩展到偶氮合成超出各种芳基卤化物和亲核芳香族化合物,为合成高价值增添化学物质的有效方法提供了有效的方法。
摘要:在这项工作中,我们描述了使用乙醇作为液体有机氢载体(LOHC)的季节性储能的绿色方法的好处和挑战。我们评估了从乙醇(ETOH)释放到形成乙酸乙酯(ETOAC)的循环效率,作为用过的LOHC,以及随后从EtOAC催化的EtOH再生,由单个分子催化剂,Ru-macho,Ru-macho,Ru-macho,ru-macho,ru-macho,ru-macho,h 2,轻度的反应温度和高度选择性温度和高高的反应温度和高高的选择性。从实验和计算研究中,我们能够最大程度地减少催化剂失活,再生活性催化剂后反应,并建立相对于由Ru-Macho催化的周期途径的停用途径的能量。基于这些发现,我们进行了反应堆设计分析,以确定基于ETOH的存储系统的足迹,以通过存储H 2的5公吨(MT)提供85 MWH的能量。我们得出的结论是,维持h 2二压压力所需的供暖和冷却提出了重要的工程挑战,以广泛部署该系统。关键字:RU-MACHO,氢存储,脱氢,反应堆设计,停用■简介
项目目标:MICA 项目将开发微系统控制生物功能的先进概念。该项目将寻求固定在微系统表面并由微系统产生的物理力控制的分子催化剂的硬件演示。此外,该项目还将寻求对此类集成分子微系统进行高精度建模和模拟。虽然对各种分子催化剂开放,但重点放在生物分子催化剂上。通过这些演示,MICA 旨在回答三个关键问题:(i) 如何使用微系统来主动控制分子?(ii) 有哪些不同的微系统物理学可用于驱动催化剂功能?(iii) 可以使用哪些协同设计方法来整合微系统和分子的不同物理学?
图 1 DEMCs 被 PhICl 2 和 H 2 还原可逆氧化的示意图。经参考文献 [34] 许可改编。版权归 2017 美国化学学会所有。与摘录材料相关的更多许可应直接向 ACS 索取。
11 最近,基于金属有机骨架 (MOF) 的聚合物基底在许多工程 12 和技术领域展现出良好的性能。然而,MOF/聚合物复合材料的一个常见缺点是 MOF 晶体封装和 13 表面积减小。这项工作报告了一种简便温和的生产自支撑 MOF 为主的中空 14 纤维垫的策略。通过 15 我们的合成方法成功制造了多种中空 MOF,包括 MIL-53(Al)-NH 2 、Al-PMOF 和 ZIF-8 16 。该合成策略结合了金属氧化物的原子层沉积 (ALD) 到聚合物纤维,16 随后选择性去除聚合物成分,然后将剩余的中空金属氧化物转化为 17 独立的 MOF 为主的中空纤维结构。中空 MOF 表现出增大的表面积、极好的孔隙率、优异的孔隙可达性,并在 CO 2 吸附(3.30 mmol g -1 )、CO 2 /N 2 分离选择性(15/85 和 50/50 CO 2 /N 2 混合物分别为 24.9 和 21.2)和催化去除 HCHO(60 分钟内完成 150 ppm 的氧化)方面表现出显着改善的性能。
芳香和脂肪液的分离是石化工业中最具挑战性的过程之一。这些分子表现出高度相似的物理和化学特征,使用常规方法提出了明显的挑战。蒸馏(用于工业分离的主要技术)依赖于反复的相变,并且特别是能源密集型的,用于分离复杂的混合物,例如芳香和脂肪族烃。在全球范围内,蒸馏和相关的分离过程近似于消耗10-15%的年能量,这是减少碳排放并推动可持续发展的主要障碍。1鉴于全球能源价格不断上升以及对更严格的环境法规的执行,人们对替代性,节能分离技术的需求不断增加,这可以减轻石化过程的环境足迹。
注册信息:现场注册受场地容量限制(最多 147 名与会者),虚拟注册受虚拟平台容量限制(最多 300 名与会者);强烈建议尽早注册。组织最多可容纳 3 名与会者。DARPA 项目经理将确定组织的构成。注册将在上述注册截止日期或达到出席人数上限时截止(以先到者为准)。注册截止日期的任何更改都将通过修改本通知和更新注册网站来记录。将不提供现场注册。虚拟提案者日注册者在注册获得批准后将获得链接和访问活动的说明。
