该期刊文章的自存档后印本版本可在林雪平大学机构知识库 (DiVA) 上找到:https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196935 注意:引用该作品时,请引用原始出版物。An, X., Wei, T., Ding, P., Liu, L., Xiong, L., Tang, J., Ma, J., Wang, F., Liu, H., Qu, J., (2023), Sodium- Directed Photon-Induced Assembly Strategy for Preparing Multisite Catalysts with High Atomic Utilization Efficiency, Journal of the American Chemical Society , 145(3), 1759-1768。https://doi.org/10.1021/jacs.2c10690
预测催化活性的最广泛使用的方法是密度功能理论,其结果依赖于所采用的交换相关功能。在这项工作中,研究了功能在预测氢和氧气进化反应(她和OER)中单原子催化剂(SAC)活性中所起的作用。16嵌入在N掺杂石墨烯中的过渡金属(TM)原子进行模拟,并评估了针对混合PBE0功能的广泛采用的Perdew-Burke-ernzerhof(PBE)功能的性能。PBE + U方法也是一种计算上不太复杂的方法,用于纠正密度功能理论中的自我交互误差。对于第一行TM,即3D系统,使用PBE获得的预测与PBE0有很大的偏差,而对于4D和5D系列而言,发现了较小的偏差。PBE + U结果代表了对PBE的改进,尽管仍然存在PBE0的某些差异。这项研究强调了DFT功能在筛选新催化剂和预测催化活性方面的重要性。对于4D和5D金属,PBE的使用似乎可以接受,而在3D系统的情况下,建议使用PBE + U或PBE0方法,特别是对于磁接地态。
用于选择性氢化反应的丰富金属催化剂。作为一类独特的多孔分子材料,金属 - 有机框架(MOF),[7]已被探索用于广泛的应用,包括气体存储[8]和分离[8]和[9]传感,[10],[10]以及生物医学成像和癌症治疗。[10–11] MOF特别适合通过摄取其分子可调性,通过大通道进行主动位点访问以及增强的催化剂稳定性来设计可重复使用的多孔单位固体催化剂。[12]因此,MOF催化剂可以结合均匀催化剂的分子可调性和均匀的催化位点,以及异质催化剂的稳定性,易于分离以及可重复使用,以提供有机转化的新类别可持续催化剂的新类别。[13]在某些示例中,MOF允许通过位点隔离来稳定催化活性中心,以设计基于单个金属中心的溶液无接口催化物种。[14]
近年来,单个原子(SAS)的使用已成为光催化H 2代的迅速增长。在这里,Sa Noble金属(主要是PT SA)可以充当高度有效的共同催化剂。用最大分散的SA染色氧化物半导体表面的经典策略依赖于合适的贵金属配合物的“强静电吸附”(SEA)。在TIO 2的情况下 - 经典的基准光催化剂 - SEA需要吸附阳离子PT复合物,例如[(NH 3)4 pt] 2 +,然后对表面结合的SA进行热反应。虽然在文献中广泛使用,但在目前的工作中,直接比较表明,基于SAS的还原性锚定为基于六氯铂(IV)酸(H 2 PTCL 6)的反应性依恋,而与SAS相比,与SAS相比,SAS在构造中直接导致SAS - 最有效的活动 - 最有效的活动 - 最有效的活动 - PT加载且没有任何热沉积治疗。 总体而言,这项工作表明,反应性沉积策略优于经典的海洋概念,因为它提供了直接的电子连接的SA锚定,因此导致光催化中高度活跃的单原子位点。,但在目前的工作中,直接比较表明,基于SAS的还原性锚定为基于六氯铂(IV)酸(H 2 PTCL 6)的反应性依恋,而与SAS相比,与SAS相比,SAS在构造中直接导致SAS - 最有效的活动 - 最有效的活动 - 最有效的活动 - PT加载且没有任何热沉积治疗。总体而言,这项工作表明,反应性沉积策略优于经典的海洋概念,因为它提供了直接的电子连接的SA锚定,因此导致光催化中高度活跃的单原子位点。
铁-氮-碳 (Fe-N-C) 材料已成为铂族金属的有前途的替代品,用于催化质子交换膜燃料电池中的氧还原反应 (ORR)。然而,它们较低的固有活性和稳定性是主要障碍。本文报道了一种在具有高度弯曲表面的分级多孔碳上具有密集 FeN 4 位点的 Fe-N-C 电催化剂 (表示为 FeN 4 - hc C)。FeN 4 - hc C 催化剂在酸性介质中表现出优异的 ORR 活性,在 0.5 m H 2 SO 4 中具有 0.85 V 的高半波电位(相对于可逆氢电极)。当集成到膜电极组件中时,相应的阴极显示出 0.592 W cm −2 的高最大峰值功率密度,并在恶劣的 H 2 /空气条件下表现出超过 30 000 次循环的运行耐久性,优于以前报道的 Fe-N-C 电催化剂。这些实验和理论研究表明,弯曲的碳载体可以微调局部配位环境,降低 Fe d 带中心的能量,并抑制含氧物质的吸附,从而提高 ORR 活性和稳定性。这项工作为 ORR 催化的碳纳米结构-活性相关性提供了新的见解。它还为设计用于能源转换应用的先进单金属位点催化剂提供了一种新方法。
最近在基于铜的金属有机框架上作为异质催化剂无机耦合反应的最新进展:综述在基于铜的金属有机框架上作为异质催化剂无机耦合反应的最新进展催化剂无机耦合反应:基于铜的金属有机框架作为异源催化剂无机耦合反应的最新进展:综述了基于铜的金属有机框架作为异质催化剂无机催化反应的最新进展:对基于铜的金属有机体的反应:综述
想要充分利用您的 Catalyst 9000 DNA Advantage 吗?想知道除了基本的自动化、保证和 SDA 之外,C9K 上的 DNA Advantage 还能为您带来什么?本课程将超越 C9K 交换的速度和馈送,带您了解我们的 Catalyst 全栈产品 - 创新的解决方案可满足接入网络的重要需求。它将涵盖市场差异化功能,这些功能可实现边缘智能(应用程序托管用例)、物联网连接和安全性(有线物联网网关、POE 分析、端点和信任分析等)、应用程序可视性和分析(SD-AVC、ERSPAN 等)以及网络中的服务发现和保证(Bonjour 的 DNA 服务、ThousandEyes 等)。有了 C9K,您已经部署了这些功能!立即详细了解如何启用这些功能并充分利用您的 Catalyst 9K 交换!
高选择性、速率提高和化学特异性是酶催化反应的特点,化学家们力求用合成催化剂模仿这些特点。1 与自然界的进化过程不同,小分子催化剂的合理而深思熟虑的设计需要精确的结构变化,理想情况下,这些变化可以对反应性和选择性产生可预测和合理的影响。在不对称催化领域,人们希望可靠地调整手性环境的空间和电子分布以影响反应的选择性,这导致广泛使用刚性的 C 2 对称配体和有机催化剂 2,而传统上人们认为灵活性是一种不受欢迎的特性。在这些系统中,经典的物理有机技术与通过密度泛函理论 (DFT) 定位过渡态 (TS) 结构相结合,已经成为理解选择性相互作用的常用方法。 3 对于传统手性催化剂,由于其相对不灵活性,因此可以进行计算研究,通常仅使用关键中间体和 TS 的最低能量结构来确定影响选择性的相互作用。
更省油的数字控制发动机打开了机遇之门。Catalyst 发动机系列受益于 GE Aerospace 的工程专业知识以及欧洲最大的脱碳研发项目。其结果是二氧化碳排放量显著减少,燃料消耗降低高达 20%。添加剂技术与先进合金相结合,实现了更先进的组件设计,使发动机设计具有更大的几何自由度,同时降低了燃油消耗和重量,并提高了耐用性和效率。与所有 GE Aerospace 和 GE Aerospace 合作发动机一样,Catalyst 能够使用可持续航空燃料 (SAF)。
更省油的数字控制发动机开启了一个充满机遇的世界。Catalyst 发动机系列受益于 GE Aerospace 的工程专业知识以及欧洲最大的脱碳研发项目。其结果是二氧化碳排放量显著减少,燃料消耗降低高达 20%。添加剂技术与先进合金相结合,实现了更先进的组件设计,使发动机设计具有更大的几何自由度,同时减少了燃油消耗和重量,提高了耐用性和效率。与所有 GE Aerospace 和 GE Aerospace 合作发动机一样,Catalyst 能够使用可持续航空燃料 (SAF)。