摘要:主动位点及其结构敏感性的性质是有效催化剂理性设计的关键,但在异质催化中已经进行了近一个世纪的辩论。尽管Brønsted -evans -polanyi(BEP)以及线性缩放关系长期以来一直用于研究这种关系中的反应性,明确的几何形状和组成特性,这一事实阻止了其在支持催化剂的结构敏感性中的探索。在这项工作中,基于可解释的多任务符号回归和全面的第一原理数据集,我们发现了一个结构描述符,拓扑不足的数量由价电子数量和晶格常数介导,以成功地解决金属催化剂的结构敏感性。用于训练,测试和可传递性研究的数据库包括10种过渡金属,两个金属晶体学阶段和17个不同方面的20种不同化学键的破坏键屏障。所得的2D描述符组成结构项,反应能量项显示出非常准确的准确性,可以预测与对称性,键顺序和空间阻滞中不同化学键的数据集的反应障碍和概括性。理论是物理和简洁的,提供了一种建设性的策略,不仅是为了理解结构敏感性,而且还可以破译金属催化剂的纠缠几何和电子效应。所揭示的见解对于位点特异性金属催化剂的合理设计很有价值。■简介
1 Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA 2 Department of Mechanical and Aerospace Engineering, Utah State University, Logan, Utah 84322, USA 3 U.S. Army Combat Capabilities Development Command Chemical Biological Center, Research & Technology Directorate, Aberdeen Proving Ground, MD 21010, USA 4 Ballydel Technologies, Inc., Wilmington, DE 19803,美国5电气与计算机工程系,特拉华大学,纽瓦克大学,德国,19711年,美国6材料科学与工程系,特拉华大学,纽瓦克大学,纽瓦克,19711年,美国,美国
在环境条件下将硝酸盐(NO3−)电催化转化为NH3(NO3RR)为哈伯-博施法提供了一种有希望的替代方案。优化NO3−向NH3的有效转化的关键因素包括增强中间体在催化剂表面的吸附能力和加快加氢步骤。在此,基于定向演化策略设计了Cu/Cu2O/Pi NWs催化剂,以实现NO3−的有效还原。受益于定向演化过程中形成的富OV的Cu2O相和原始Cu相的协同作用,该催化剂对各种NO3RR中间体表现出更好的吸附性能。此外,在定向演化过程中锚定在催化剂表面的磷酸基团促进了水的电解,从而在催化剂表面产生H+并促进NO3RR的加氢步骤。结果显示,Cu/Cu 2 O/Pi NWs 催化剂表现出优异的 NH 3 FE(96.6%)和超高的 NH 3 产率,在 1 m KOH 和 0.1 m KNO 3 溶液中,在 − 0.5 V 相对 RHE 下为 1.2 mol h − 1 g cat. − 1。此外,催化剂的稳定性因磷酸基对 Cu 2 O 相的稳定作用而增强。这项工作突出了定向演化方法在设计 NO 3 RR 催化剂中的前景。
在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。
摘要:通过表面活性剂介导的策略制备了分层ZSM5和Y沸石,NH 4 OH改变了处理的持续时间和CTAB表面活性剂的量,并作为关键胶束浓度的参考倍数(CMC)。使用粉末X射线衍射,N 2吸附等温线在-196℃以及SEM和TEM显微镜表征。在80°C的乙酸盐中用乙酸盐的弗里德尔 - 工艺酰化评估了催化性能。碱性表面活性剂介导的治疗对两个沸石的影响不同。对于ZSM5,CTAB分子聚集体几乎无法在中型毛孔内扩散,主要导致晶间的中源性和外部表面积增加,而没有阳性催化影响。另一方面,对于大孔沸石,CTAB分子聚集体很容易扩散并促进胶束周围晶体单位的重排,从而导致毛孔的肿大,即晶体内孔隙度。用CTAB量为CMC的32倍处理了12小时的优化基于Y的样品,显示出添加较高量的表面活性剂时未观察到的产品产量和速率常数的增加。在400℃的热处理上,用消费催化剂的再利用显示出约90%的再生效率,显示了改良催化剂的良好潜力。
摘要:最近,人们对使用各种“催化剂”的兴趣日益浓厚,以进一步丰富逆硫化反应的基质范围。虽然关于这些催化剂的作用机理已经有了若干提案,但是这些混合物中硫的形态仍然难以捉摸。作为了解这些催化剂何时以及是否适用的关键要素,我们试图通过尝试表征硫的形态来阐明二硫代氨基甲酸盐物质在逆硫化反应中的作用。无论是否含有金属二硫代氨基甲酸盐、二乙基二硫代氨基甲酸钾 (K-DTC),含有不同官能团与硫的各种基质的反应效率都表明形成了快速波动的硫形态,最重要的是,存在阴离子硫。最后,根据我们的研究结果,提出了一些关于使用二硫代氨基甲酸盐催化剂的最佳实践的建议。
摘要:还原反应(ORR)对于各种可再生能源技术至关重要。ORR的重要催化剂是嵌入氮掺杂石墨烯(Fe-n-c)中的单个铁原子。然而,ORR在Fe-N-C上的限速步骤尚不清楚,会严重阻碍理解和改进。在这里,我们报告了所有步骤的激活能,该激活能由恒定电极电位下的缩写分子动力学模拟计算得出。与普遍认为氢化步骤限制了反应速率的普遍信念相反,我们发现限制步骤是氧分子在Fe上取代吸附水。这是通过H 2 O解吸和O 2吸附的一致运动发生的,而不会使现场裸露。有趣的是,尽管通常被认为是潜在独立的“热”过程,但屏障仍会随电极电势而减小。这可以通过更强的Fe -O 2结合和较低的Fe -H 2 O结合在较低电位上的结合而解释,因为O 2获得了电子,并且H 2 O向催化剂捐赠电子。我们的研究提供了对Fe -n -c的ORR的新见解,并突出了动力学研究在异质电化学中的重要性。■简介氧气还原反应(ORR)对于多种可再生能源技术(例如燃料电池和金属 - 空气电池)至关重要。铂是ORR表现最好的催化剂。但是,它遭受了高昂的损害,这阻碍了其商业用途。1-4为了克服这一障碍,巨大的研究工作致力于寻找PT的具有成本效益的替代催化剂。5-10最有前途的候选者之一是嵌入氮掺杂石墨烯中的单铁原子(Fe-n-c),通常在酸性条件下使用。11-18尽管对该催化剂进行了广泛的研究,但仍未清楚的步骤限制了Fe -n -n - -C上的ORR速率。缺乏此关键信息显着限制了催化剂的发展。通常建议的ORR fe -n - c的途径具有以下步骤(图1 a): * + o 2→ * oo, * oo + h + h + + e-→ * ooh, * ooh + h + h + h + h + + e-→ * o + h 2 O,限制步骤的实验确定是具有挑战性的。另一方面,密度功能理论(DFT)提供了一种计算反应能量(包括激活能量)的方法,因此原则上可以回答有关速率步骤的问题。然而,由于系统的复杂性,很难直接计算异质电化学的激活能,这需要仔细处理溶剂化和电极电位的影响。19-29因此,大多数计算研究都根据以下假设,即最热的上坡(或最小下坡)步骤具有最高的活化能,并使用它来推断动力学。那些
该期刊文章的自存档后印本版本可在林雪平大学机构知识库 (DiVA) 上找到:https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196935 注意:引用该作品时,请引用原始出版物。An, X., Wei, T., Ding, P., Liu, L., Xiong, L., Tang, J., Ma, J., Wang, F., Liu, H., Qu, J., (2023), Sodium- Directed Photon-Induced Assembly Strategy for Preparing Multisite Catalysts with High Atomic Utilization Efficiency, Journal of the American Chemical Society , 145(3), 1759-1768。https://doi.org/10.1021/jacs.2c10690
预测催化活性的最广泛使用的方法是密度功能理论,其结果依赖于所采用的交换相关功能。在这项工作中,研究了功能在预测氢和氧气进化反应(她和OER)中单原子催化剂(SAC)活性中所起的作用。16嵌入在N掺杂石墨烯中的过渡金属(TM)原子进行模拟,并评估了针对混合PBE0功能的广泛采用的Perdew-Burke-ernzerhof(PBE)功能的性能。PBE + U方法也是一种计算上不太复杂的方法,用于纠正密度功能理论中的自我交互误差。对于第一行TM,即3D系统,使用PBE获得的预测与PBE0有很大的偏差,而对于4D和5D系列而言,发现了较小的偏差。PBE + U结果代表了对PBE的改进,尽管仍然存在PBE0的某些差异。这项研究强调了DFT功能在筛选新催化剂和预测催化活性方面的重要性。对于4D和5D金属,PBE的使用似乎可以接受,而在3D系统的情况下,建议使用PBE + U或PBE0方法,特别是对于磁接地态。
近年来,单个原子(SAS)的使用已成为光催化H 2代的迅速增长。在这里,Sa Noble金属(主要是PT SA)可以充当高度有效的共同催化剂。用最大分散的SA染色氧化物半导体表面的经典策略依赖于合适的贵金属配合物的“强静电吸附”(SEA)。在TIO 2的情况下 - 经典的基准光催化剂 - SEA需要吸附阳离子PT复合物,例如[(NH 3)4 pt] 2 +,然后对表面结合的SA进行热反应。虽然在文献中广泛使用,但在目前的工作中,直接比较表明,基于SAS的还原性锚定为基于六氯铂(IV)酸(H 2 PTCL 6)的反应性依恋,而与SAS相比,与SAS相比,SAS在构造中直接导致SAS - 最有效的活动 - 最有效的活动 - 最有效的活动 - PT加载且没有任何热沉积治疗。 总体而言,这项工作表明,反应性沉积策略优于经典的海洋概念,因为它提供了直接的电子连接的SA锚定,因此导致光催化中高度活跃的单原子位点。,但在目前的工作中,直接比较表明,基于SAS的还原性锚定为基于六氯铂(IV)酸(H 2 PTCL 6)的反应性依恋,而与SAS相比,与SAS相比,SAS在构造中直接导致SAS - 最有效的活动 - 最有效的活动 - 最有效的活动 - PT加载且没有任何热沉积治疗。总体而言,这项工作表明,反应性沉积策略优于经典的海洋概念,因为它提供了直接的电子连接的SA锚定,因此导致光催化中高度活跃的单原子位点。