摘要:研究了 Pd(II) 催化的单 N 保护氨基酸 (MPAA) 配体和 TBHP 氧化剂介导的脂肪族羧酸中 β-C(sp 3 )–H 键内酯化反应的机理。我们已经表明,TBHP 氧化剂和 MPAA 配体的组合非常关键:反应通过 MPAA 配体介导的 TBHP 氧化 Pd(II)/Pd(IV) 进行,然后 Pd(IV) 中间体发生 C–O 还原消除。虽然 Pd(II)/Pd(IV) 氧化是限速步骤,但 C–H 键活化是区域选择性控制步骤。 MPAA 配体不仅可作为辅助配体稳定催化活性物质,还可作为 C–H 键去质子化过程中的质子受体,以及 TBHP 氧化 Pd(II)/Pd(IV) 过程中的质子供体。使用带有羟基的过氧化物基氧化剂也是绝对必要的:在限速 Pd(II)/Pd(IV) 氧化过渡态中,OH 基团的 H 原子参与 1,2-氢转移,以促进 MPAA 配体和过氧化物之间的质子穿梭。因此,脂肪族羧酸中 C(sp 3 )–H 键的内酯化通过 Pd(II)/Pd(IV) 催化循环进行,这与之前报道的 Pd(II) 催化、吡啶酮配体和 O 2 氧化剂辅助的芳香族 o-甲基苯甲酸中苄基 C–H 内酯化不同,后者通过 Pd(II)/Pd(0) 催化循环和分子内 SN 2 亲核取代机理进行。通过比较脂肪族和芳香族羧酸中 C(sp 3 )–H 键内酯化的这些结果,我们能够确定催化剂、底物、配体和氧化剂的作用。
Kristen M. Flynn、Kolby L. White 和 Mohammad Movassaghi* 麻省理工学院化学系,美国马萨诸塞州剑桥 02139 电子邮件:movassag@mit.edu
下面我们将证明 TCDC 方法成功应用于 2-炔基烯酮 1 与硝酮 2 的对映选择性串联反应,其中硝酮表现为亲核 1,3-偶极子,得到形式上的 [3+3] 环加成产物 3(方案 1b)。[14] 此外,我们证明这些串联环化/[3+3] 环加成可以作为多组分反应进行,通过羟胺 4 和醛 5 原位形成硝酮。该方法适用于广泛的芳基和烷基取代底物,克服了此类对映选择性反应的一些当前局限性。[14] 该方法依赖于一种新的 CPA-Phos 型配体,在有和没有活化银盐的情况下均可操作。DFT 计算提供了有关新 Au(I) 复合物在此反应中的行为的见解。
摘要:我们描述了具有一系列酰胺指导组的吲哚胺的钯催化的C7-乙酰化。虽然在吲哚核和N1-acyl组上耐受多种取代基,但乙酰氧基化对C2-和C6-丁香碱取代基最敏感。使用MMOL尺度上的肉桂酰胺底物证明了这种吲哚C7-乙酰氧基化的实用性。几个N1-acyl组,包括天然生物碱中存在的基团,在竞争性的C5氧化中指导吲哚胺底物的C7-乙酰氧基化。这种化学的应用允许首次通过晚期C17-乙酰乙酰化的N-苯甲酰苯甲胺的后期C17-乙酰氧基化首次合成N-苯甲酰丙烯酸酯。简介吲哚氨基结构在许多生物活性吲哚生物碱中无处不在。1吲哚生物碱的aspidosperma家族包括化学合成的当前感兴趣的成员,鉴于其结构复杂性,具有连续的立体中心以及在多环芯上的氧化和取代程度。1,2个生物碱家族的许多成员在吲哚细胞结构上具有C17 -O键(图1A)。1b,3,4 c17-氧化的aspidosperma生物碱的策略在很大程度上取决于使用被转化为吲哚氨基结构的含氧启动材料。5值得注意的是,过渡金属在催化C – O键通过Arene功能化6的最新进展尚未应用于C17氧化的aspidosperma生物碱的合成。受单一吲哚碱生物碱的生物合成的启发,其中多环状核心经历酶促修饰,包括甲基化,酰基化和C – H氧化,7我们寻求化学选择性的C17-氧合C17-氧化作用,以使其均匀的综合综合综合,以促进了疗程。
起源,收购项目并与开发合作伙伴Boulder,CO - 2021年3月16日 - 催化是一家独立的电力生产商,该公司开发,建构,拥有和运营可再生的可再生能源分布式生成和存储项目,用于商业和工业(C&I)市场,今天宣布已在New York中获得了两个社区Solar项目。位于北部地区,这两个项目的总容量合计为13兆瓦(DC),并将为当地居民,企业,市政当局和机构提供更大的清洁能源。Catalyze正在完成开发过程,并将在春季开始在这些项目上进行建设,从而增加了该公司快速增长的投资组合。CATALYZE由领先的能源投资者封装L.P.和Yorktown Partners LLC的支持。催化使用其专有的原始对操作软件Reenergyze™来增强开发业务案例并进行现场可行性分析的各种可再生能源合作伙伴的能力,并对批准进行了迅速有效的项目尽职调查。“这些项目是我们如何通过利用Reenergyze来加速共同开发和项目收购的完美例子,” Catalyze说:“ Catalyze说。“它为我们和我们的合作伙伴提供了一个平台,可以访问和共享网站分析,经济建模,集成系统设计工具等,同时还可以自动化提案开发。这种额外的专业知识允许催化更加无缝地提供包括为客户存储的集成可再生能源系统。最终这意味着我们能够通过共享项目管道来确保确保更快地为社区和企业提供清洁,负担得起的能源。”作为Catalyze努力扩展全国商业太阳能和能源存储的努力的一部分,该公司还通过在年初整合Prisma Energy Solutions的团队和PRISMA Energy Solutions的能力来支持其电池储能系统产品。“催化专有技术,财务强度和精通电池存储的结合,拥有所有所需的工具来承担独特的挑战性和高度分散的C&I可再生能源领域,” Extap Enspap Ensup Trunsition Transition管理伙伴Shawn Cumberland说。
温莎大学化学与生物化学系,温莎401号,温莎,on,n9b 3p4,加拿大,加拿大N9B 3P4