另一个例子是碳信用质量计划(CCQI)。它提供的评分范围与ICVCM相似,尽管其评估考虑了某些特定于项目的环境(CCQI,2022)。除了考虑注册表和项目类型外,该计划还考虑了实施项目的位置。此评估率项目类型而不是特定的注册项目。它基于7个包含19个评估标准的目标。使用CCQI等评级组织可以为投资者提供基于分类标准组合(注册表,方法,位置等)评估项目质量的手段。但是,它不提供针对各个项目及其信用的评估。这似乎暗示着与基于分类上下文而不是特定于项目的动作和文档的项目信用误解相关的风险。
摘要。神经模型技术预测学习者绩效的利用已在包括自然语言处理在内的各种技术领域取得成功。最近,研究人员逐步将注意力集中在采用这些方法来促进社会经济可持续性的贡献,尤其是在预测学生学业成绩的背景下。此外,教育数据经常涵盖众多分类变量,预测模型的功效与适用于管理和解释该数据的可持续编码技术息息相关。这种方法符合促进教育中可持续发展的更广泛的目标,强调负责和公平的实践,以利用先进的技术来增强学习成果。基于这种见解,本文介绍了一篇文献综述,该文献综述深入研究了使用机器学习技术来预测在线培训课程中学习者的成果。目的是提供针对预测学生绩效,分类编码方法和所使用的数据集设计的最新模型的摘要。研究进行了实验,以相互评估建议的模型,并且与使用替代机器学习算法的某些预测技术相比,同时同时进行了预测技术。调查结果表明,采用编码技术转换分类数据会增强深度学习体系结构的有效性。值得注意的是,当与长期短期内存网络集成时,该策略会为所检查的问题产生出色的结果。
由于所有这些因素,以及人类倾向于以笼统的范畴术语思考,关于 AGI 时间线的争论通常以充满希望、沮丧、欣喜若狂和不屑一顾的人们之间的对决、正交的范畴声明的形式出现。有些人推断某些领域最近的快速发展,并认为变革性的 AGI 即将到来,甚至到了忽视储蓄和生育等面向未来的活动的地步,或者提倡使用暴力来抑制即将到来的 AGI 发展。与此同时,其他人则对最近的成就不屑一顾,并坚持认为 AGI 是一个遥远而可疑的原因,甚至是哲学上的不可能。其他人则懒洋洋地完全避开预测和分析。而这些人除了意见不一之外,基本上甚至不知道如何互相交谈。
分类变量表示为计数和百分比,而连续变量则为标准偏差(SD)或具有四分位间范围(第25%和第75个百分位数)的中位数表示为手段。p值,并将卡方检验应用于分类变量。使用多元逻辑回归和平滑曲线拟合探索了DR和HDL-C之间的关联,并调整了相关的临床协变量。使用递归算法确定拐点。在检测非线性时,构建了一个加权的两型逻辑回归模型。使用EmpowerStats软件(http://www.empowerstats.com)和R版本4.1.1进行统计分析。p值小于0.05被认为具有统计学意义。
概率机器学习的最新进展已导致单纯形上的新分布家族。这种分布称为连续的分类,与Dirichlet具有相似之处,因为它定义了一个特别简单的封闭形式密度的指数族。然而,与Dirichlet(或任何基于对数的方法)不同,即使在零价值的组件存在下,连续的分类对数 - 样品函数也可以很好地定义,这使得此分布成为零元素组成数据的有效可能性模型,而无需归因于Zeros的插入。在此摘要中,我们回顾了我们的新颖分布的关键特性,并提出了一种应用,可以将其用于降低组成数据的尺寸。我们还突出了机器学习领域与组成数据分析之间的一些未置换的连接,我们的新颖分布密切相关。
•π:由A(电支)无限的实例组成的决策/优化问题。每个实例是问题的输入字符串;在实例数据可用的许多编码中,最常见的是离散/连续值的向量,其中包含实例的最重要属性。在以下内容中,我们假设可以有效地将几个编码彼此转移(即,没有太多信息丢失),我们将π称为编码实例集。 •C A:A的参数配置集,即不同类型的数据数组(布尔,数字,分类),通常由continusus和/或离散/分类值的向量编码。并非所有可能的参数值都可以接受,这是由于有关多个参数的逻辑条件。因此,为简单起见,我们假设C A仅包含可行的算法配置; •A:
使用频率和百分比描述了分类变量。使用均值和标准偏差(SD)总结数据。为了测试分类变量与瓣效果之间的关联,如果细胞中至少20%的预期值<5。对与皮瓣存活相关的因子进行了单变量的逻辑回归分析。然后将具有P值≤0.1的因子用于多变量回归分析。比较,P值<0.05被认为具有统计学意义。