一元函数微积分:线性和二次近似、误差估计、泰勒定理、无穷级数、收敛测试、绝对和条件收敛、泰勒和麦克劳林级数。多元函数微积分:偏导数、链式法则、隐式微分、梯度、方向导数、全微分、切平面和法线、最大值、最小值和鞍点、约束最大值和最小值、曲线绘制、积分的几何应用、双重积分、面积和体积的应用、变量变换。常微分方程:一阶及高阶微分方程、线性微分方程。具有高阶常数系数、柯西微分方程、参数变异法、联立微分方程。图论:简介、术语、表示、同构、连通性、Wars Hall 算法、欧拉和汉密尔顿路径以及最短路径树。参考文献:
6 要求空间在范数 (2.14) 上是完整的,这个要求相当微妙。如果 k − φ k = 0,那么我们必须将和 φ 视为空间中的同一对象。这并不一定意味着它们作为函数是相同的,因为例如它们在某些离散点 xi ⇢ R 处可能取不同值,因为 − φ 在这些离散点处的非零值不会对 (2.14) 做出贡献。特别地,任何仅在离散点集上非零的函数都应该等同于零函数。得到的空间称为 L 2 ( R , dx ),有时简称为 L 2 。(L 代表勒贝格,是更一般类型的赋范函数空间的示例。)L 2 ( R , dx ) 由在范数 (2.14) 上收敛的柯西函数序列的等价类组成。在本课程中,我们将主要略过这些技术细节,而且它们肯定是不可考的。有关希尔伯特空间的更深入讨论,请参阅第二部分线性分析和泛函分析课程。
复变量函数。简要回顾荣誉课程大纲所包含的主题:解析函数、柯西-黎曼方程、复平面积分、柯西定理、柯西积分公式。刘维尔定理。莫雷特拉定理。泰勒和罗朗展开式的证明。奇点及其分类。分支点和分支割线。黎曼单。留数定理。留数定理在定积分求值和无穷级数求和中的应用。(11 讲)线性向量空间、子空间、基和维数、向量的线性独立性和正交性、格拉姆-施密特正交化程序。线性算子。矩阵表示。矩阵代数。特殊矩阵。矩阵的秩。初等变换。初等矩阵。等价矩阵。线性方程的解。线性变换。基的变换。矩阵的特征值和特征向量。凯莱-哈密尔顿定理。矩阵的对角化。双线性和二次型。主轴变换。(9 讲)
模块 1 (1 小时) 简介 模块 2 (10 小时) 3-D 中的应力和应变 – 柯西公式、主应力、静水应力、偏应力、应力转换、莫尔圆、八面体剪应力、应变能密度等。 模块 3 (4 小时) 故障理论 模块 4 (3 小时) 弹性地基上的梁 模块 5 (2 小时) 曲梁的弯曲 – 起重机钩和链条 模块 6 (6 小时) 非圆形构件、空心构件、薄壁型材的扭转;膜类比 模块 8(5 小时) 柱子 - 直柱和初始弯曲柱,兰金公式 模块 9(3 小时) 能量方法 - 能量定理,使用能量理论计算挠度、扭曲、解决扭转(非圆形)问题 模块 10(2 小时) 非对称弯曲,剪切中心 模块 11(4 小时) 光弹性简介 总小时数 = 40 需要一名 RA 全职
模块3[8L] 数列和级数:数列和级数收敛的基本概念;收敛检验:比较检验、柯西根检验、达朗贝尔比检验(这些检验的语句和相关问题)、拉贝检验;交错级数;莱布尼茨检验(仅语句);绝对收敛和条件收敛。 模块4[10L] 多元函数微积分:多元函数简介;极限和连续性、偏导数、三元以下齐次函数和欧拉定理、链式法则、隐函数的微分、全微分及其应用、三元以下雅可比矩阵最大值、最小值;函数的鞍点;拉格朗日乘数法及其应用;线积分的概念,二重和三重积分。模块 5[10L] 向量微积分:标量变量的向量函数,向量函数的微分,标量和向量点函数,标量点函数的梯度,向量点函数的散度和旋度,
课程成果: 1)分析序列或级数的性质(收敛或发散)。 2)应用中值定理研究物体的运动。 3)用积分计算面积、体积、质量和重心。 4)应用多元微积分研究多元函数的性质。 5)理解微分方程的概念及其应用 课程内容: 模块一:序列和级数:实数序列、级数、比率和根测试。 模块二:单变量函数微积分:极限、连续性和可微性的回顾。 中值定理:罗尔定理、拉格朗日定理、柯西定理、带余数的泰勒定理、不定式、曲率、曲线追踪。积分学基本定理、积分学平均值定理、定积分的计算、在旋转体面积、长度、体积和表面积中的应用、不定积分:Beta 函数和 Gamma 函数、积分符号下的微分。
单位 - I:通过梯形形式和正常形式的矩阵矩阵等级,高斯 - 约旦方法的非单个矩阵倒数,线性方程系统:求解高斯消除方法的均匀和非均匀方程的系统,高斯·塞德尔迭代方法。UNIT - II: Eigen values and Eigen vectors Linear Transformation and Orthogonal Transformation: Eigen values, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley -Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form通过正交转换为规范形式。单元-III:微积分平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理,Taylor的系列。确定积分的应用在评估曲线旋转的表面区域和体积(仅在笛卡尔坐标中),不当积分的定义:beta和伽马功能及其应用。单位-IV:多变量计算(部分分化和应用)的定义极限和连续性。部分区分:Euler的定理,总导数,Jacobian,功能依赖性和独立性。应用程序:
拉格朗日乘数法。(10)数列和级数:数列、数列的极限及其性质、正项级数、收敛的必要条件、比较检验法、达朗贝尔比率检验法、柯西根检验法、交错级数、莱布尼茨规则、绝对收敛和条件收敛。(6)积分学:积分学的平均值定理、反常积分及其分类、Beta 函数和 Gamma 函数、笛卡尔和极坐标中的面积和长度、笛卡尔和极坐标中的旋转立体的体积和表面积。(12)多重积分:二重积分、二重积分的求值、三重积分的求值、积分阶数的变换、变量的变换、二重积分的面积和体积、三重积分的体积。 (10)向量微积分:向量值函数及其可微性、线积分、面积积分、体积积分、梯度、旋度、散度、平面格林定理(包括矢量形式)、斯托克斯定理、高斯散度定理及其应用。 (10)教材,
复分析(每周 3 节课):复平面的拓扑结构、单连通域和多连通域。同伦版本。扩展复平面的球面表示、解析函数、谐波函数、次谐波函数及其应用、次谐波函数的 Littlewood 条件、复积分、柯西定理和积分公式、缠绕数、柯西估计、莫雷拉定理、刘维尔定理、代数基本定理。最大模原理、施瓦茨引理、泰勒级数、洛朗级数、复函数的零点和极点、亚纯函数。赫尔维茨定理、奇点分类、留数定理、参数原理、鲁什定理和高斯-卢卡斯定理、轮廓积分及其在非正常积分中的应用、实积分的计算、涉及正弦和余弦的非正常积分、涉及正弦和余弦的定积分、通过分支切割积分、保形映射、莫比乌斯变换、施瓦茨-克里斯托费尔变换。韦尔斯特拉斯定理、蒙特尔定理及其在建立维塔利定理中的应用。哈纳克不等式及其在建立哈纳克原理中的应用。数值分析(每周 1 节课):实矩阵的特征值和特征向量:极值特征值和相关特征向量的幂法、对称矩阵的雅可比和 Householders 方法。样条插值:三次样条。函数逼近:最小二乘多项式逼近、正交多项式逼近、切比雪夫多项式、兰佐斯节约法。数值积分:闭式牛顿-柯特公式、高斯求积法。常微分方程(ODE)初值问题的数值解:多步预估-校正法、Adams-Bashforth 方法、Adams-Moulton 方法、Milne 方法、收敛性和稳定性。常微分方程的两点边界值问题:有限差分和 Shooting 方法。参考文献:复分析:1.Churchill, RV 和 Brown, JW,《复变量及其应用》第 5 版,McGrawHill。 1990. 2. Gamelin, TW, “复分析”, Springer-Verlag 2001. 3. Greene R. 和 Krantz, SG, “单复变量函数理论”, 第 3 版, GSM, 第 40 卷, 美国数学学会。2006. 4. Lang, S., “复分析”, Springer –Verlag, 2003. 5. Narasimhan, R. 和 Nivergelt, Y., “单变量复分析”, Birkhauser, 波士顿, 2001. 6.Ahlfors, LV, “复分析”, 第 3 版, McGrawHill, 纽约,1979. 7.Conway, JB “单复变量函数”, Springer –Verlag, 1978. 数值分析:
在阳米尔斯仪表上的欧几里得凯奇表面表面表面含有直接经验意义的仪表对称性组通常被认为是g des = g des = g i /g∞0,其中g i是一个具有边界的符号对称性和g∞0是其由构成理论构成的构成的构成的转化。这些群体分别被识别为渐近变化的仪表变换,以及渐近身份的量规变换。在Abelian案例中G = U(1)然后将其标识为全球仪表对称组,即u(1)本身。然而,在数学上还是概念上,这一说法的已知派生都是不精确的。我们针对阿贝里安和非亚伯仪理论严格得出了物理量规组。我们的主要新观点是,限制g i的要求不仅源于能量的有限,而要依赖于Yang-Mills理论的Lagrangian的要求,以在切实的捆绑包上定义以配置空间。此外,我们解释了为什么商恰好由每个同型类别的全球仪表组的副本组成,即使各种规范变换显然具有不同的渐近速率收敛速率。最后,我们在框架中考虑了Yang-Mills-Higgs理论,并表明渐近边界条件在不间断和破碎的相处有所不同。1