编写一组线性方程的矩阵表示,并分析方程系统的解决方案查找特征值和特征向量使用正交转换将二次形式减少到规范形式。在平均值定理上求解应用程序。使用beta和伽马函数评估不正确的积分找到两个具有/没有约束的变量的功能的极端值。评估多个积分,并将概念应用到查找区域,量ITUME-I:矩阵10 L矩阵的矩阵等级和正常形式的矩阵等级,正常形式,与juss-jordan方法的非单明性矩阵相反,高斯 - jordan方法,线性方程系统:均匀和非同性方程式的求解系统和非良好方程式的求解方法。UNIT-II: Eigen values and Eigen vectors 10 L Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of正交转换通过正交转换到规格形式的二次形式。单位-III:微积分10 L平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理,Taylor的序列。确定积分的应用在评估曲线旋转的表面区域和体积(仅在笛卡尔坐标中),不当积分的定义:beta和伽马功能及其应用。单元IV:多变量演算(部分分化和应用)10 L极限和连续性的定义。部分分化:Euler的定理,总导数,Jacobian,功能依赖性和独立性。应用程序:使用拉格朗日乘数方法的两个变量和三个变量的功能的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
人工智能与数据、计算能力和新算法的结合可以为解决工程问题(例如机床状态监测)提供重要工具。然而,这些问题中的许多问题都需要能够在高度动态的场景中执行的算法,在这些场景中,数据流具有来自不同类型变量的极高采样率。基于高斯混合模型的无监督学习算法(称为基于高斯的动态概率聚类 (GDPC))就是其中一种工具。然而,如果数据流中发生大量与瞬态相关的概念漂移,则该算法可能存在重大限制。在这些条件下,GDPC 变得不稳定,因此我们提出了一种称为 GDPC+ 的新算法来提高其稳健性。GDPC+ 代表了一项重要的改进,因为我们引入了:(a) 基于贝叶斯信息准则 (BIC) 自动选择混合成分的数量,以及 (b) 基于柯西-施瓦茨散度与迪基-富勒检验相结合的概念漂移过渡稳定。因此,就误报数量而言,GDPC+ 在高度动态场景中的表现优于 GDPC。使用随机合成数据流和从高速生产发动机曲轴的机床获得的真实数据流状态监测研究了 GDPC+ 的行为。我们发现初始时间窗口大小可用于使算法适应不同的分析要求。还通过归纳由重复增量修剪以产生误差减少 (RIPPER) 算法生成的规则来研究聚类结果,以便从底层监控过程及其相关概念漂移中提供见解。
CO1:应用矩阵理论和向量微积分的概念。 CO2:开发求解微分方程的分析方法。 CO3:应用有限差分和有限体积法求解微分方程。 CO4:在工程问题中实施分析和计算技术。矩阵线性方程组的数学运算、一致性 - 向量空间、线性相关性和独立性、基础和维度 - 线性变换 - 投影 - 正交矩阵、正定矩阵、特征值和特征向量、矩阵的相似性、对角化、奇异值分解。矢量场、线积分、曲面积分 - 变量变换、格林定理、斯托克斯定理和散度定理。常微分方程 (ODE)、初值问题及其求解技术、二阶常微分方程的通解、齐次和非齐次情况、边界值问题、Sturm-Liouville 问题和 ODE 系统 - 偏微分方程 (PDE)、柯西问题、特征法、二阶 PDE 和分类、边界条件类型、热、波和拉普拉斯方程的公式和解。使用 MATLAB/python 进行 ODE 和 PDE 的数值实现 - ODE:初值问题:一阶和高阶方法、边界值问题、射击方法、数据拟合、最小二乘 - 标量传输方程的一阶和高阶数值方法、热、波和拉普拉斯方程的有限差分方法。与该计划相关的案例研究:地震波的声学模型、非均匀介质中的扩散、两个平板之间的流动发展、焊接问题、固体材料中的热传导、扩散的相场解(Allen Cahn 1D 解)、两个或多个分子与 Lennard-Jones 势相互作用的解等。
写出一组线性方程的矩阵表示并分析方程组的解 寻找特征值和特征向量 利用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数求不当积分 找出有/无约束的两个变量函数的极值。 评估多重积分并应用概念寻找面积、体积 UNIT-I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩计算,通过高斯-乔丹方法对非奇异矩阵进行逆计算,线性方程组:通过高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、利用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、利用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅在笛卡尔坐标系中)、不定积分的定义:Beta 函数和 Gamma 函数及其应用。 UNIT-IV:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
模块 I(18 小时)- 矩阵初等变换 – 阶梯形式 – 通过简化为阶梯形式利用初等变换进行排序 – 利用初等变换解线性齐次和非齐次方程。向量的线性相关性和独立性 – 特征值和特征向量 – 特征值和特征向量的性质(不要求证明) – 线性变换 – 正交变换 – 对角化 – 利用正交变换将二次型简化为平方和 – 二次型的秩、指标、签名 – 二次型的性质 模块 2(18 小时) - 偏微分 偏微分:链式法则 – 齐次函数的欧拉定理陈述 – 雅可比矩阵 – 泰勒级数在二元函数中的应用 – 二元函数的最大值和最小值(不要求证明结果) 模块 3(18 小时) - 多重积分 笛卡尔和极坐标中的二重积分 – 积分阶数变换 – 使用二重积分计算面积 – 使用雅可比矩阵计算变量变换 – 笛卡尔、圆柱和球坐标中的三重积分 – 使用三重积分计算体积– 使用雅可比矩阵改变变量 – 简单问题。模块 4(18 小时) - 常微分方程 具有常数系数的线性微分方程 - 互补函数和特殊积分 - 使用参数变异法寻找特殊积分 - 欧拉柯西方程 - 勒金德方程 模块 5(18 小时) - 拉普拉斯变换 拉普拉斯变换 - 移位定理 - 变换的微分和积分 - 导数和积分的拉普拉斯变换 - 逆变换 - 卷积特性的应用 - 单位阶跃函数的拉普拉斯变换 - 第二移位定理(不需要证明) - 单位脉冲函数和周期函数的拉普拉斯变换 - 使用拉普拉斯变换解具有常数系数的线性微分方程。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
o 获得持续学习和知识更新的基本知识工具 o 学生将培养不断更新物理研究中的数学技术和技能的态度。 教学大纲 内容知识 度量空间。定义。例子。开集、闭集、邻域。拓扑空间。连续映射。稠密集、可分空间。收敛和柯西序列。完备性。例子。度量空间的完备性。巴拿赫空间。向量空间。范数空间。完备性和巴拿赫空间。例子:有限维空间、序列空间、函数空间。有界线性算子。连续性和有界性。BLT 定理。连续线性泛函和对偶空间。有界线性算子的巴拿赫空间。例子。测度论简介。勒贝格积分。Sigma 代数和 Borel 测度。可测函数。支配和单调收敛。富比尼定理。例子:绝对连续测度、狄拉克测度、康托测度。勒贝格分解定理。希尔伯特空间。内积。欧几里得空间和希尔伯特空间。正交性、勾股定理。贝塞尔不等式和柯西-施瓦茨不等式。三角不等式。平行四边形定律和极化恒等式。例子。直和。投影定理。Riesz-Fréchet 引理。正交系统和傅里叶系数。正交基和 Parseval 关系。Gram-Schmidt 正交化程序。与 l^2 同构。张量积和积基。希尔伯特空间上的线性算子。有界算子的 C ∗ -代数。正规、自伴、酉和投影算子。Baire 范畴定理。一致有界性原理。一致、强和弱收敛。一些量子力学。无界算子。伴生。对称和自伴算子。例子:乘法和导数算子。本质自伴算子。自伴性和本质自伴性的基本标准。图、闭包
项目名称 理学学士 – 人工智能与机器学习 课程代码/名称 UGAM101 / 线性代数与微积分 年份/学期 I / ILTPC 3 1 0 4 课程目标: 1. 用矩阵方法解释线性方程组的解。 2. 讨论级数的收敛和发散。 3. 解释二元函数的偏导数和极值 4. 讨论标量和矢量函数的物理解释 5. 讨论矢量线、曲面和体积积分。 课程成果: 成功完成课程后,学生将能够: 1. 应用矩阵方法解线性方程组 2. 测试无限级数的收敛和发散。 3. 确定二元函数的极值。 4. 将向量微分算子应用于标量和向量函数 5. 用格林函数求解线、表面和体积积分,UNIT-I 矩阵 12 矩阵的秩、梯形、线性方程组的一致性、向量的线性依赖性、特征值、特征向量、特征值的性质、凯莱-哈密顿定理、二次型、通过线性变换将二次型简化为标准形式、二次型的性质。UNIT-II 无穷级数 12 数列和级数收敛的定义。正项级数 – 收敛的必要条件、比较检验、极限形式比较检验、达朗贝尔比率检验、拉贝检验、柯西根检验、交错级数、莱布尼茨规则、绝对和条件收敛。 UNIT-III 偏微分及其应用 12 两个或多个变量的函数,偏导数,高阶偏导数,全导数,隐函数的微分,雅可比矩阵,两个变量函数的泰勒展开式,两个变量函数的最大值和最小值。 UNIT-IV 向量微分学 12 标量和向量点函数,向量算子 Del,梯度,方向导数,散度,旋度,Del 两次应用于点函数,Del 应用于点乘积