•2024年5月15日进行了全面而系统的文献搜索。• The search was done on commercial medical literature databases, including BIOSIS Previews (1969 to 2008), Embase (1974 to 2024 Week 19), Medline and Epub Ahead of Print, Medline In-Process, In-Data-Review & Other Non-Indexed Citations, Medline Daily and Medline (1946 to May 14, 2024), Joanna Briggs Institute Evidence Based Practice Database (Current to May 08, 2024年),Cochrane临床答案(2024年4月),可通过OVID平台获得。•我们通过研究扭伤/压力的作用以及ME/CFS或纤维肌痛的发展开始了搜索。在检查了我们关于扭伤/应变文献发现的标题和摘要之后,我们扩大了搜索,以包括对ME/CFS或纤维肌痛的发展的任何身体伤害的作用。这些文献搜索中采用了关键字的组合。这些关键字包括:
摘要:我们使用频域方法调查了印度总体和部门层面的权力消耗与经济增长之间的Granger因果关系,这将帮助政策制定者通过不同频率的适当政策计划寻求有效的电力分配。我们发现,在总体上,单向因果关系从总功耗到经济增长,从第二个开始到第七季度。在部门环境中,结果是不同的。因为工业能源消耗与经济增长之间没有因果关系;因此,可以为工业部门实施节能政策。此外,由于商业部门15个季度之后存在双向因果关系,因此该部门也可以启动短期政策,而不是节能政策。在工业和农业部门中,应该启动促销政策,因为从部门的功耗到经济增长,单向因果关系存在。因此,与印度所有权力部门的单一政策相比,不同和特定的政策将更合适,以确定对更好的经济发展的有效利用。
结果:我们的分析表明,特定细菌类群(例如Coprocococus1)(OR = 0.798,95%CI:0.711–0.896,P <0.001),coprococcus3(OR = 0.851,95%CI:0.740-0.97979,20.979,p = 0.009,p = 0.00.979,pocioccus1(OR = 0.798,95%CI:0.798,95%CI:0.798,95%CI:0.798,95%), 95%CI:0.817–0.996,p = 0.041),flavonifracto r(OR = 0.823,95%CI:0.708–0.957,p <0.001)和lachnospiraceae ucg004,而其他包括Rusinococcaceae Uccaceae UccaCeae Uccaceae ci:1.1127,或者= 1.127:1127:1127 1.008–1.261, p = 0.036), Eubacterium nodatum group (OR = 1.080, 95%CI: 1.018–1.145, p = 0.025), Butyricimonas (OR = 1.118, 95%CI: 1.014–1.233, p = 0.002), and Bacteroidetes (OR = 1.274, 95%CI: 1.014–1.233,p <0.001)增加便秘风险。在反向MR分析中,发现便秘会影响某些人群的丰富性,包括家族XIII,卟啉单核细菌,Proteeobacteria,proteeobacteria,lentisphaeria,Veillonellaceae,Victivallaceae,Victivallaceae,Victivallaceae,catenibacterium catenibacterium,catenibacterium,shelimonas和Victivallales和Victivallales,指示BIDIRECTIONTALSALICTALSALICTALALALESPERTY。灵敏度分析证实了这些发现的鲁棒性,没有异质性或水平多效性的证据。
从GWAS上的IC的摘要统计数据是从GWAS目录(Sollis等,2023)中获得的,其中1个包括240例病例和456,108个对欧洲血统的控制。 英国生物银行是一项涵盖50万名40至69岁成年人的队列研究,于2006年至2010年在英国进行了(Neale Lab,2021年)。 依靠ICD 10编码的IC的诊断。 Jiang及其同事开发了一种高级基因组关联(GWA)工具,称为“ FastGWA-GLMM”,该工具专为处理涉及数百万个个人的大规模GWAS数据集而设计。 该工具能够分析所有二元表型中的常见变体和稀有变体,即使是以高度不平衡的病例 - 控制比为特征的(Jiang等,2021)。 他们已应用FastGWA-GLMM使用UK Biobank(UKB)数据来调查2,989个二元性状。 通过FastGWA数据门户可以公开访问这些分析所产生的全面摘要统计信息。 2从GWAS上的IC的摘要统计数据是从GWAS目录(Sollis等,2023)中获得的,其中1个包括240例病例和456,108个对欧洲血统的控制。英国生物银行是一项涵盖50万名40至69岁成年人的队列研究,于2006年至2010年在英国进行了(Neale Lab,2021年)。依靠ICD 10编码的IC的诊断。Jiang及其同事开发了一种高级基因组关联(GWA)工具,称为“ FastGWA-GLMM”,该工具专为处理涉及数百万个个人的大规模GWAS数据集而设计。该工具能够分析所有二元表型中的常见变体和稀有变体,即使是以高度不平衡的病例 - 控制比为特征的(Jiang等,2021)。他们已应用FastGWA-GLMM使用UK Biobank(UKB)数据来调查2,989个二元性状。通过FastGWA数据门户可以公开访问这些分析所产生的全面摘要统计信息。2
摘要。背景:许多观察性研究研究了肠道菌群与阿尔茨海默氏病(AD)之间的联系,但因果关系仍然不确定。目的:本研究旨在评估肠道菌群对AD的因果影响。方法:使用摘要数据进行了两样本的孟德尔随机化(MR)研究。AD的摘要统计数据来自最新的全基因组关联研究(病例和代理案例:85,934;对照:401,577)。 从Mibiogen联盟获取了肠道菌群的摘要数据。 因果效应估计主要取决于逆差异加权方法以及对多效性和异质性测试的灵敏度分析。 此外,还进行了反向MR分析以检查潜在的反向因果关系。 结果:将七个肠道菌群鉴定为与AD风险相关的。 selenomonadales(优势比[OR] 1.13,95%的固定间隔[CI] 1.03–1.24,P = 0.01),家庭巴氏菌科(OR 1.07,95%CI CI 1.01-1.1.1.1.1.13,P = 0.01),p = 0.01),以及1.0.1.07%。 p = 0.04) were correlated with an elevated likelihood of AD, while Class Mollicutes (OR 0.87, 95%CI 0.79–0.95, p = 0.00), Genus Ruminiclostridium9 (OR 0.87, 95%CI 0.78–0.97, p = 0.01), Genus Clostridiuminnocuumgroup (OR 0.94, 95%CI 0.89–0.99,p = 0.03)和Eggerthella属(OR 0.94,95%CI 0.89-1.00,p = 0.04)在缓解AD中施加了有益的影响。 在AD和这七个特定的肠道微生物群中,没有发现统计学上显着的反向因果关系。AD的摘要统计数据来自最新的全基因组关联研究(病例和代理案例:85,934;对照:401,577)。从Mibiogen联盟获取了肠道菌群的摘要数据。 因果效应估计主要取决于逆差异加权方法以及对多效性和异质性测试的灵敏度分析。 此外,还进行了反向MR分析以检查潜在的反向因果关系。 结果:将七个肠道菌群鉴定为与AD风险相关的。 selenomonadales(优势比[OR] 1.13,95%的固定间隔[CI] 1.03–1.24,P = 0.01),家庭巴氏菌科(OR 1.07,95%CI CI 1.01-1.1.1.1.1.13,P = 0.01),p = 0.01),以及1.0.1.07%。 p = 0.04) were correlated with an elevated likelihood of AD, while Class Mollicutes (OR 0.87, 95%CI 0.79–0.95, p = 0.00), Genus Ruminiclostridium9 (OR 0.87, 95%CI 0.78–0.97, p = 0.01), Genus Clostridiuminnocuumgroup (OR 0.94, 95%CI 0.89–0.99,p = 0.03)和Eggerthella属(OR 0.94,95%CI 0.89-1.00,p = 0.04)在缓解AD中施加了有益的影响。 在AD和这七个特定的肠道微生物群中,没有发现统计学上显着的反向因果关系。从Mibiogen联盟获取了肠道菌群的摘要数据。因果效应估计主要取决于逆差异加权方法以及对多效性和异质性测试的灵敏度分析。此外,还进行了反向MR分析以检查潜在的反向因果关系。结果:将七个肠道菌群鉴定为与AD风险相关的。selenomonadales(优势比[OR] 1.13,95%的固定间隔[CI] 1.03–1.24,P = 0.01),家庭巴氏菌科(OR 1.07,95%CI CI 1.01-1.1.1.1.1.13,P = 0.01),p = 0.01),以及1.0.1.07%。 p = 0.04) were correlated with an elevated likelihood of AD, while Class Mollicutes (OR 0.87, 95%CI 0.79–0.95, p = 0.00), Genus Ruminiclostridium9 (OR 0.87, 95%CI 0.78–0.97, p = 0.01), Genus Clostridiuminnocuumgroup (OR 0.94, 95%CI 0.89–0.99,p = 0.03)和Eggerthella属(OR 0.94,95%CI 0.89-1.00,p = 0.04)在缓解AD中施加了有益的影响。在AD和这七个特定的肠道微生物群中,没有发现统计学上显着的反向因果关系。结论:这项研究揭示了某些肠道菌群与AD之间的因果关系,为推进临床治疗提供了新的见解。
大语言模型(LLM)通常会产生偏见的输出,其中包含令人反感,有毒或刻板印象的文本。现有的LLM对准方法,例如根据人类反馈(RLHF)学习的强化学习,从而根据当前模型输出的奖励信号来减轻偏见,而无需考虑偏见的来源。在这项工作中,为了探索偏见的形成,我们从因果的角度重新审视了LLMS的文本生成。我们确定了包含文本短语语义相关性的预训练数据和输入提示,因为LLMS和模型输出之间的两个混杂因素会导致偏见。受到因果观点的启发,我们利用RL对齐中的奖励模型作为一种仪器变量来对LLMS进行因果干预。利用初始LLM和Intervened LLM之间的奖励差异作为介入反馈来指导RL FINETUNT,我们提出了C ausality-a ausa a aus a Ware a Ware a Ware a strignment(CAA),用于LLM DEMIAS。在两个具有三个不同对齐目标的文本生成任务上的经验证明了我们在对齐LLMS时的方法,以产生较小的偏见和更安全的输出。
我们研究了全球供应链中断的因果影响和政策影响。我们构建了一个新指数,该指数从集装箱船上的强制性自动识别系统数据中衡量全球供应链状态,并提出了一种新型的空间聚类算法,该算法决定了全球主要港口的容器船的实时拥塞,速度和速度和速度。我们开发了一种模型,在生产商和零售商之间进行搜索摩擦,将备用生产能力与商品市场拥堵以及产出和价格的响应联系起来,对供应链冲击的响应。产出,价格和备用能力的共同介绍产生了唯一的识别限制,使我们能够研究宏观经济结果的因果影响。我们记录了供应链冲击如何在2021年推动美国的通货膨胀,但是从2022年开始,传统的需求和供应冲击也在解释通货膨胀方面发挥了重要作用。最后,我们展示了货币政策如何在供应链中断的情况下与常规情况更有效。
摘要。混合建模将机器学习与科学知识相结合,以增强对自然定律的解释性,概括和遵守。尽管如此,等于等待和正则化偏见在混合建模中构成挑战,以实现这些目的。本文介绍了一种通过因果推理框架估算混合模型的新方法,该方法专门采用双机器学习(DML)来估计因果关系。我们在两个与二氧化碳通量有关的问题上展示了它对地球科学的使用。在Q 10模型中,我们证明了基于DML的杂种建模在估计因果参数方面优于最终深度神经网络(DNN)方法,证明效率,正规化方法对偏见的稳健性以及稳固性。我们的方法应用于碳通量分配,在适应异质因果效应方面具有灵活性。这项研究强调了明确定义因果图和关系的必要性,并倡导这是一种一般的最佳实践。我们鼓励在混合模型中继续探索因果关系,以使知识指导的机器学习更加可解释和值得信赖。
模仿学习使代理可以在绩效指标未知并且未指定奖励信号时从专家演示中学习。标准模仿方法通常不适用于学习者和专家的参议员能力不匹配和示威的情况,并被未观察到的混杂偏见污染。为了应对这些挑战,已追求因果模仿学习的最新进步。但是,这些方法通常需要访问可能并非总是可用的基本因果结构,从而带来实际挑战。在本文中,我们研究了使用部分识别的规范马尔可夫决策过程(MDP)内的强大模仿学习,即使在系统动力学不是从混杂的专家演示中确定系统动力学的情况下,也允许代理商实现专家性能。特定的,首先,我们从理论上证明,当MDP中存在未观察到的混杂因素(UCS)时,学习者通常无法模仿专家的表现。然后,我们在部分能够识别的设置中探索模仿学习 - 从可用的数据和知识中,转移分布或奖励功能是无法确定的。增强了著名的Gail方法(Ho&Ermon,2016年),我们的分析导致了两种新颖的因果模仿算法,这些算法可以获得有效的政策,以确保实现专家绩效。