1. 首选地点 #1 – 布劳沃德县达尼亚海滩清洁能源中心 ................................................................................................................... 309 2. 首选地点 #2 – 迈阿密戴德县埃弗格莱兹太阳能中心 ................................................................................................................... 314 3. 首选地点 #3 – 圣露西县 Pink Trail 太阳能中心 ................................................................................................................... 319 4. 首选地点 #4 – 圣露西县 Bluefield Preserve 太阳能中心 ............................................................................................................. 324 5. 首选地点 #5 – 奥基乔比县卡文迪什太阳能中心 ............................................................................................................................. 329 6. 首选地点 #6 – 克莱县 Anhinga 太阳能中心 ............................................................................................................................. 334 7. 首选地点 #7 – 圣罗莎县 Blackwater River 太阳能中心 ............................................................................................................................. 344 9. 首选地点 #9 – Flowers Creek 太阳能中心,卡尔霍恩县 ...................................................................................................................... 349 10. 首选地点 #10 – First City 太阳能中心,埃斯坎比亚县 ...................................................................................................................... 354 11. 首选地点 #11 – Apalachee 太阳能中心,杰克逊县 ...................................................................................................................... 359 12. 首选地点 #12 – Wild Azalea 太阳能中心,加兹登县 ...................................................................................................................... 364 13. 首选地点 #13 – Chautauqua 太阳能中心,沃尔顿县 ...................................................................................................................... 369 14. 首选地点 #14 – Shirer Branch 太阳能中心,卡尔霍恩县 ...................................................................................................................... 374 15. 首选地点 #15 – Saw Palmetto 太阳能中心,贝县 ...................................................................................................................... 379 16. 首选地点 #16 – Cypress华盛顿县 Pond 太阳能中心................................................................................................................ 384 17. 首选地点 #17 – 普特南县 Etonia Creek 太阳能中心........................................................................................................389 18. 首选地点 #18 – Terrill Creek 太阳能中心,克莱县 ...................................................................................................................... 394 19. 首选地点 #19 – Silver Palm 太阳能中心,棕榈滩县 ............................................................................................................. 399 20. 首选地点 #20 – Ibis 太阳能中心,布里瓦德县 ...................................................................................................................... 404
Directa Plus(AIM:DCTA)是基于消费者和工业市场的基于石墨烯纳米片的产品的主要生产商和供应商,已签订了贷款协议,总价值为1,000,000欧元(“贷款”)(“贷款”),资金用于完成最终付款,以完成对SetCar S.A的收购最终付款。 ”)。贷款Directa Plus的条款已与Nant Capital,LLC(“ Nant Capital”)赚取1,000,000欧元的贷款,该公司由Patrick Soon-Son-Shiong拥有和控制,并与Soon-Son-Shiong先生一起持有Directa Plus的普通股Capital 28.73%(“贷款”)。贷款将以7%的利率产生利息。每年和余额,加上任何利息,在2024年12月31日之前的任何时候都可以偿还。收购完成后,Directa Plus在SETCAR中的股东将从50.99%增加到99.95%,而SETCAR中的现有股东仍然是少数股东。完成收购的完成是有条件的,除其他外,还要支付150万欧元的总费用(“考虑”)以及Setcar股东在2024年4月举行的股东会议上通过某些决议的通过。该考虑的结构是立即支付€50万欧元,这是从集团现有现金资源支付的,进一步支付了100万欧元,该欧元将在2024年3月30日之前支付,并将使用贷款的收益支付。关联方交易就目的的公司规则而言,贷款被视为一项关联方交易。董事考虑在与公司提名的顾问卡文迪许·资本市场有限公司(Cavendish Capital Markets Limited)进行了咨询之后,就公司的股东而言,贷款条款是公平而合理的。Directa Plus的创始人兼首席执行官 Giulio Cesareo评论说:“董事会很高兴收到我们的主要股东Nant Capital的支持,以资助SetCar收购的第二次司机。。Giulio Cesareo评论说:“董事会很高兴收到我们的主要股东Nant Capital的支持,以资助SetCar收购的第二次司机。对于Directa Plus来说,这是一个非常激动人心的机会,将使我们能够进一步利用我们不断增长的环境补救部门的重要机会并捕捉更大的价值。”
世界上最成功的实验室之一背后的战略,一个英国研究所全面产生了十几个诺贝尔奖获得者和生物医学的突破。剑桥的分子生物学实验室如何做?我们的研究发现。英国剑桥的医学研究委员会的分子生物学实验室(LMB)是基本生物学研究的先驱。自1950年代以来,这家研究所 - - 目前有700名员工 - - 生产了十几个诺贝尔奖获奖者,包括DNA破译者James Watson,Francis Crick和Fred Sanger。在过去的15年中,LMB已授予其科学家Venki Ramakrishnan,Michael Levitt,Richard Henderson和Greg Winter的四项诺贝尔奖。从DNA的结构,蛋白质到遗传测序,核糖体的功能,结构生物学的新计算方法,冷冻电子显微镜(Cryo-EM)的发展和抗体的演化(见图1和文本框)。在2015 - 19年间,其产量的三分之一以上(36%)位居全球最引用的论文的前10%(LMB Quinquennial Review,2020年)。LMB成功的秘诀是什么?许多研究人员和历史学家都指出了其起源于英国剑桥大学物理系的卡文迪许实验室,研究人员带来了X- Ray晶体学等技术,以在生物学的凌乱世界中承受。它的杰出人才库,再加上医学研究委员会(MRC)的慷慨和稳定的资金,无疑发挥了作用。但是,还有更多。这些发现都不是偶然的:实验室是以增加发现可能性的方式组织的(请参阅“新问题,新技术”)。找出如何与高级科学家进行了12次访谈,以提供对组织的见解。我们还分析了60年的档案文件,包括研究出版物,会议记录,外部评估报告和内部管理报告,以确定管理方法中的共同主题。
Heeger,MacDiarmid和Shirakawa等人发现导电聚乙炔。在1977年开设了一个新时代,这使他们因“导电聚合物的发现和开发”而获得了2000年诺贝尔化学奖。[1]在1987年,Tang和Vanslyke报告了砂含量的电致发光装置结构,代表了有机电子领域的里程碑。[2]在1990年,朋友,福尔摩斯,布拉德利及其来自剑桥大学的梅尔维尔实验室和梅尔维尔实验室的同事开发了其基于聚合物的电动发光设备,该设备被广泛认为是打开塑料电子设备的门。[3]从那时起,基于导电聚合物的有机发光二极管(OLED),有机光伏(OPV),有机场效应晶体效应(OFET)和有机固态激光器(OSSL)的技术一直非常迅速地推动。随着大量信息电子设备的灵活性,灵活的电子设备已成为现实。在过去的十年中,灵活的电子研究经历了快速增长,这也是由便携式和可穿戴仪器的功能驱动的。灵活的电子设备是一种猖ramp的技术发明,可重新使用软电介电和导电材料,它由于其出色的光电特性,例如电导率,opti-cal吸光度和载体和载体运输以及有吸引力的机械性能,包括灵活性,不良能力和溶液的制造,因此鼓励使用聚合物。核心组件的柔性设计在开发柔性电子设备方面起着至关重要的作用。灵活的电子设备被认为是基于开拓和跨学科研究的破坏性技术,它可以破坏基于经典硅电子产品的内在局限性。这可以为Ingration设计,能源革命,医疗技术变化开放创新的前景,从而为未来通过自我依赖的创新提供了重要的机会。柔性电子产品的优越性首先归因于对电子元素的性能的最终追求。灵活电子设备的关注问题通常是最佳光电特性和设备灵活性之间的权衡。出于织物的目的 - 高性能有机柔性设备,已经探索了不同的方法,主要集中在以下四个方面:a)内在灵活的有机成分(半导体,电极,绝缘体和底座),b)设备工程,c)c) - c)构造的构造技术和d)。具有内在灵活性的聚体用于构建灵活性
个人信息 姓名:Mario Caironi 工作地点:意大利米兰 IIT 纳米科学技术中心 电子邮件:mario.caironi@iit.it 电话:研究员唯一标识符:研究员 ID O-2745-2013 个人资料网页:https://www.iit.it/web/printed-and-molecular- electronics/our-staff-details/-/people/mario-caironi研究小组网页:https://www.iit.it/web/printed-and-molecular- electronics Autorizzo il trattamento dei miei dati individuali ai sensi del D.lgs。 196 del 30 giugno 2003 e smi 教育 2004 – 2007 博士,viva 日期:2007 年 5 月 5 日;学位授予日期:2007 年 10 月 18 日,以“优异成绩”获得意大利米兰理工大学电子与信息系 博士论文题目:《基于有机半导体的光电探测器和电双稳态存储设备》。 博士生导师:Marco Sampietro 教授 1997 – 2003 电子工程硕士,100/100 意大利米兰理工大学电子与信息系 1992 – 1997 高中文凭,60/60 “优异成绩”,L. Mascheroni”,贝加莫,意大利 博士后培训 2007 – 2010 博士后研究员,在英国剑桥大学卡文迪什实验室 FRS Henning Sirringhaus 教授的指导下 现任职位 2019 终身高级科学家,CNST@PoliMi,IIT,意大利米兰 前任职位 2017 – 2019 终身研究员,第二阶段,意大利米兰理工学院(IIT)纳米科学与技术中心@PoliMi 2014 – 2017 终身研究员,第一阶段,意大利米兰理工学院(IIT)纳米科学与技术中心@PoliMi 2010 – 2014 团队负责人,意大利米兰理工学院(IIT)纳米科学与技术中心@PoliMi 学术任职情况 2018 – 2020 博士课程“有机电子学:原理、设备和应用”的联合组织者和讲师 米兰理工大学信息技术博士学院 2014 – 2021 受邀讲师,“光伏物理学”课程研讨会,G. Lanzani 教授 米兰理工大学物理工程系,米兰 (IT) 2004 – 2010 受邀讲师,“电子设备和电路的聚合物材料”课程研讨会,物理工程教授,都灵理工大学,都灵 (IT) 2004 – 2007 在线教学助理,“电工技术 A”在线课程,A. Storti-Gajani 教授 米兰理工大学信息工程系,莱科 (IT) 2004 – 2006 实验室助理,“模拟电子学”和“电子学基础”课程,米兰理工大学电子工程教授,米兰 (IT) 2004 – 2006 导师,“Orcad PSpice 和微控制器”实践课程,F. Zappa 教授电子工程,米兰理工大学,米兰 (IT) 2003 – 2006 助教,“电子学基础”课程,C. Guazzoni 教授电子工程,米兰理工大学,米兰 (IT) 科学服务
媒体出版物 • Acta Orthopaedica • 人口研究 • 城市研究 • 言语季刊 • Acta Paediatrica • 教育研究 • 民族和种族研究 • 人体工程学 • 英语研究 • 审查索引 • 传播教育 • 康复医学杂志 • 世界考古学 • 发展研究杂志 • 社会历史 • 第三世界季刊 • 欧亚研究 • Acta Oto-Laryngologica • 西欧政治 • 传播专著 • 课程研究杂志 • 劳动史 • 媒体传播批判研究 • 生存 • 医学与哲学杂志 • 区域研究 • 系统生物学 • 经济与社会 • 摄影史 • 国际地理信息科学杂志 • 美国生物伦理学杂志 • 军事平衡 • 国际遥感杂志 • 文化研究 • 宗教教育 • 调查 • 斯堪的纳维亚胃肠病学杂志 • 性与婚姻治疗杂志 • 国际情报与反情报杂志• 经验心理学季刊 • 美国家庭治疗杂志 • 民俗学 • 合成通信 • 批判亚洲研究 • 临床神经心理学家 • 职业与环境卫生杂志 • 教育公平与卓越 • 冲突与恐怖主义研究 • 欧洲浪漫主义评论 • 中东研究 • 细胞分子生物学 • 心灵胜过情绪 • 认知心理学:学生手册 • 精华
1. Garcia-Bastidas, F. 等人。哥伦比亚首次报道由 Fusarium odoratissimum 引起的卡文迪什香蕉枯萎病热带小种 4。APS 出版物。(2019 年)。259 https://doi.org/10.1094/PDIS-09-19-1922-PDN 260 2. Varma, V. 和 Bebber, DP。气候变化对全球香蕉产量的影响。Nat. 261 Clim. Change 9 , 752-757 (2019)。262 3. Simmonds, NW 和 Shepherd, K。栽培香蕉的分类和起源。J. 263 Linn. Soc. Bot。55 , 302-312 (1955)。 264 4. Gold, CS、Kiggundu, A.、Abera, AMK 和 Karamura, D. 乌干达 Musa 品种的多样性、分布和农民偏好。Exp. Agric. 38, 39-50 (2002)。 266 5. Gambart, C. 等人。农业生态集约化战略对农场绩效的影响和机遇:乌干达中部和西南部香蕉种植系统案例研究。食品系统可持续发展前沿。23, 87 (2020)。 269 6. Wielemaker, F. 引自:Kema, GHJ 和 Drenth, A. (eds.)。实现香蕉的可持续种植。第 1 卷:栽培技术。伯利·多德农业科学系列。 271 Burleigh Dodds Science Publishing,英国剑桥(2018 年)。272 7. Ordonez,N. 等人。最糟糕的情况是香蕉和巴拿马病——当植物和病原体克隆相遇时。PLoS Pathog。11,e1005197(2015 年)。274 8. Ndayihanzamaso,P. 等人。开发用于检测东非和中非尖镰孢菌古巴专化种谱系 VI 菌株的多重 PCR 检测方法。欧洲植物病理学杂志(2020 年)。277 9. Soluri,J。口味的解释:出口香蕉、大众市场和巴拿马病。环境。278 Hist。7,386-410(2002 年)。 279 10. Stover, RH 疾病管理策略和香蕉产业的生存。植物病理学年鉴。24 ,83-91 (1986)。281 11. Bubici, G.、Kaushal, M.、Prigigallo, MI、Gómez-Lama Cabanás, C. 和 Mercado-Blanco, J. 香蕉枯萎病的生物防治剂。微生物学前沿。10 ,616 (2019)。283 12. Kaushal, M.、Mahuku, G. 和 Swennen, R. 枯萎病感染田中有症状和无症状香蕉相关的根部定植微生物组的宏基因组学见解。植物。9 ,263 (2020)。 286 13. Mollot, G.、Tixier, P.、Lescourret, F.、Quilici, S. 和 Duyck, PF 新的主要资源增加了对香蕉农业生态系统中害虫的捕食。农业与昆虫学。14 , 317-323 288 (2012)。 289 14. Djigal, D. 等人。覆盖作物改变香蕉农业生态系统中土壤线虫食物网。土壤生物化学。48 , 142-150 (2012)。 290 15. Karangwa, P. 等人。东非和中非尖镰孢菌古巴专化的遗传多样性。植物疾病。102 , 552-560 (2018)。 293 16. Jassogne, L. 等人。咖啡/香蕉间作为乌干达、卢旺达和布隆迪的小农咖啡 294 农民提供了机会。在 G. Blomme、P. Van Asten 和 B. Vanlauwe 中,撒哈拉以南非洲湿润高地的香蕉系统(第 144-149 页)。国际农业和生物科学中心。沃灵福德:CABI。(2013 年)。 17. Norgrove, L. 和 Hauser S. 喀麦隆南部农林业系统中不同树木密度和“刀耕火种”与“刀耕火种”管理下芭蕉的产量。大田作物研究。78,185-195(2002 年)。 18. Zhu, Y. 等人。水稻遗传多样性和疾病控制。自然 406,718-722(2000 年)。 19. Deltour, P. 等人。农林复合系统对香蕉枯萎病的抑制作用:土壤特性和植物群落的影响。农业生态系统环境。239,303 173-181(2017 年)。304
Plants Australian Genetic Recombination Regulation Organization (OGTR) accepts field testing of CSIRO's genetically modified canola The Australian Genetic Technology Regulation Organization (OGTR) has issued a licensed DIR 205 to the Commonwealth Scientific and Industrial Research Organization (CSIRO) to allow field testing of genetically modified (GM) canola with increased tolerance of abiotic stress.通用汽油菜石可以在新南威尔士州和南澳大利亚州的最多三个地点生长,第一年最多可容纳1.5公顷,明年最多2公顷。考试将于2025年5月至2030年12月。该现场测试的目的是评估在澳大利亚野外条件下(包括环境压力)下GM菜籽菌株的性能。在此现场测试中生长的GM菜籽无用于人类食物或牲畜饲料。 最终的风险评估和风险管理计划(RARMP)得出的结论是,这种有限和受控的释放对人们以及环境的健康与安全的风险可忽略不计。但是,施加许可条件以限制释放的大小,位置和持续时间,并限制了转基因作物及其在环境中的遗传物质的扩散和保留。 最终的RARMP可在OGTR网站的DIR 205页面上在线获得,以及RARMP的摘要,有关此决定的问答以及许可证的副本。 Wageningen的研究人员和合作伙伴开发了对TR4的第一个香蕉,Wageningen大学研究所的黑人Sigatoka研究人员与Chiquita,Keygene和Musaradix合作,开发了一种新的混合香蕉黄道,该Yellebrid Banana黄道对两种最具破坏性的疾病抗体性疾病,是Bananas:Fusarium Tropical Race 4(tr4)和黑色SIGAKA(TR4)。黄道一号的发展是在世界各地的香蕉种植的重要时期的开创性事件。 近年来,TR4和Black Sigatoka造成了重大损失,造成了价值数亿美元的损失。黄道一号对TR4具有抗药性,TR4具有损坏整个农场的霉菌,而黑色Sigatoka是一种大大降低产量的叶片疾病。这两种疾病一直是对香蕉行业的长期威胁,特别是对广泛出口的卡文犬香蕉的威胁。 研究团队将传统交配技术与最新的DNA分析技术相结合,以加速黄道一个开发过程。这使得可以更迅速有效地选择具有理想性状(例如抗病性)的新品种。黄道一号仍然是原型,目前在荷兰的温室中生长。预计将被送往菲律宾和印尼地区,在那里TR4和Black Sigatoka造成严重破坏。