摘要:网格中可再生能源的大规模发电的增加,需要通过廉价,可靠且可访问的大量储能技术来支撑,并在迅速和长时间内迅速提供大量电力。挤压空气储能(CAES)代表了这种存储选择,三个商业设施使用盐洞在德国,美国和加拿大进行存储运营,而CAES现在在许多国家都被积极考虑。在英国存在大量床位的Halite沉积物,并且已经托管或已考虑用于解决方案挖掘的地下气体存储(UGS)洞穴。,我们使用了在EPSRC资助的图像项目中开发的工具,已经使用了具有caes目的的UGS潜力的人,这些方程是使用Huntorf Caes工厂的操作数据验证的。根据2018年英国电力需求约为300 TWH的总理论“静态”(一次性填充)的存储能力,结果表明,最少有几十个TWH储存在盐洞中的TWH储存量,当盐洞穴中的盐库中的电力源与可再生能源的储存量相互促进,并提供了可再生电气的销量,可提供较大的电力,以供电,以提供可再生的电力,以供应量大的电力孔,以供应越来越大量的电力孔,以供应量大的电力孔,以供应越来越多的电力,以提供较大的电力范围,以提供较大的电力范围,以便提供较大的电力。努力。
作者(S)Jos Sijm,Gaby Janssen,GermánMorales-Espana,Joost van Stralen,Ricardo Hernandez-Serna和Koen Smekens数量136(包括appendices) Number of appendices 3 Sponsors NAM, Gasunie, Gasterra, Nouryon, EBN, Rijksdienst voor Ondernemend Nederland (RVO) Project name Large-Scale Energy Storage in Salt Caverns and Depleted Gas Fields (Acronym: LSES) Project number 060.36821, subsidy reference: TGEO118002 All rights reserved.未经TNO先前的书面同意,本出版物的任何部分都不得通过印刷,Photoprint,缩微胶卷或任何其他方式复制和/或出版。如果此报告是根据指示起草的,则合同方的权利和义务应遵守TNO委员会的一般条款和条件,或者签订了合同方之间的相关协议。允许向具有直接利益的当事方提交报告。©2020 TNO
在首个此类项目中,邦纳维尔电力管理局与太平洋西北国家实验室以及一整套工业和公用事业合作伙伴合作,评估在华盛顿州和俄勒冈州内陆独特地质环境中开发压缩空气储能 (CAES) 的技术和经济可行性。CAES 的基本思想是在非高峰电力可用或电网需要额外负载来平衡时,捕获压缩空气并将其存储在地下合适的地质结构中。存储的高压空气被返回地面并在需要额外发电时(例如在高峰需求期间)用于发电。迄今为止,世界上有两座 CAES 电厂在运行;一座是 1991 年投入使用的阿拉巴马州麦金托什 110 兆瓦电厂,另一座是 1978 年建成的德国亨托夫 290 兆瓦电厂。两座电厂都将空气存储在地下通过溶液采矿产生的盐穴中。由于地下盐层在地理上分布相对较少,尤其是在太平洋西北部,项目团队将传统盐穴 CAES 储存的分析扩展到更为普遍的地下多孔透水岩石结构。这样做导致了 CAES 概念及其基本价值主张的一系列重大进步,超越了传统的高峰到非高峰负荷转移。有关项目的假设、分析方法和发现的详细信息,请参阅执行摘要和本报告正文。但是,本研究的主要总体结论是:
随着世界转向低碳未来,对高效,安全和成本效益的储能解决方案的需求变得越来越重要。氢已经成为有前途的能量载体,具有许多优势,例如高能密度,零发射燃烧和多功能应用。尽管如此,仍然存在有效的氢储存的挑战。本研究研究了北达科他州地下氢(UHS)的潜力,评估了其在支持该地区可再生能源目标方面的机会和挑战。北达科他州的独特地质特征,丰富的可再生能源资源以及不断增长的能源需求使其成为UHS实施的理想场所。本评论探讨了各种UHS技术,包括盐洞,耗尽的石油和天然气储层以及含水层,强调其技术可行性,环境影响以及北达科他州环境中的经济生存能力。在地下盐形成中创建的盐洞穴由于不渗透性,结构完整性和快速循环能力而非常适合UHS。北达科他州的丰富盐沉积物,尤其是在威利斯顿盆地,为大规模氢存储提供了很大的机会。耗尽的石油和天然气储层提供了另一种可行的选择,利用现有的基础设施和水库知识。该州的石油和天然气生产历史悠久,为潜在的UHS项目产生了许多耗尽的储层候选者。含水层是天然存在的地下水地层,构成了第三个选择。虽然比盐洞的研究少于盐洞和耗尽的水库,但由于其广泛的分布和实质性储存能力的潜力,含水层在北达科他州对UHS表现出了希望。此外,我们强调了国家的关键经济因素和利益。总而言之,这项研究对与在北达科他州实施地下氢存储有关的机遇和挑战进行了全面评估。通过对该地区的地质特征,经济因素和环境问题进行详细分析,我们旨在为决策者,行业利益相关者和研究人员提供宝贵的见解。此信息可以帮助告知未来的UHS项目,并支持该州向可持续能源未来的过渡。
在地质构造中地下储存氢气可能是一种廉价且环保的中长期储存方式。氢气可以储存在地下的不同层中,例如含水层、多孔岩石和盐洞。22 需要指出的是,盐洞并不是自然存在的。相反,它们是地下盐层中的人工空腔,是在溶液开采过程中通过注水控制岩盐溶解而形成的。23 虽然地下氢储存类似于天然气储存,并且已在美国和英国的盐洞中得到证实,但地质结构的选择、工艺危害和经济性、法律和社会影响等挑战可能会阻碍其商业应用。Tarkowski 和 Uliasz-Misiak 之前的研究中已经充分记录了这些挑战。24 在另一项研究中,同一作者回顾了阻碍大规模利用地下氢储存的障碍。 25 二氧化碳排放许可成本增加和“绿色氢”成本下降等因素是大规模实施地下氢储存的关键考虑因素。天然氢已在世界各地发现,包括阿曼、新西兰、俄罗斯、菲律宾、日本、中国以及意大利和法国西阿尔卑斯山 10,26 – 28
随着世界为了减轻环境影响,盐构造在实现能源转变目标中的重要性不能被夸大。盐轴承盆地在整个过渡过程中具有巨大的发展潜力。盐盆地可以用作氢,CO 2和废物的储存地点,并在盐体内和周围提供增强的地热能潜力。因此,表征成分的进步,了解内部盐变形,解码盐结构的演变以及理解在操作和放弃洞穴期间盐的行为对于未来的能量过渡至关重要。
摘要 摘要 氢气是一种低碳清洁能源,生产来源广泛,大力发展氢能产业是实现双碳目标、应对全球能源转型的重要举措。在氢能“制备—储存—运输—应用”全产业链中,氢气存储难度大一直是制约氢能产业高质量发展的因素。盐穴储氢具有成本低、规模大、安全性高、储氢纯度高等突出优势,是未来大规模储氢的重要发展方向,也是我国低碳能源转型的重大战略需求。全面调研了我国制氢产业和氢能消费现状,进一步分析了我国盐穴储氢需求,调研了国外利用盐穴储存天然气和氢气的技术和工程现状,总结了我国盐穴储氢的发展和建设历史。对比了盐穴储氢技术在天然气、氦气、压缩空气、氢气储藏中的异同,提出了我国盐穴储氢技术面临的三大科技难题:层状盐岩中的氢气渗流与生物化学反应、盐穴储氢井筒完整性控制、储氢群灾害孕育与防治,明确了储氢需求快速增长的趋势和我国大型盐穴储氢技术的重点研究方向。
天然气储存设施可以大规模、低成本地储存可持续和波动能源,从而确保供应安全。它们提供并运行灵活性工具,从客户每小时到季节性运营需求,从而实现强大而有弹性的系统。天然气储存设施在未来还可以在储存可再生和低碳气体(包括氢气)方面发挥重要作用:经过一些改造的盐穴适合储存氢气,目前对枯竭气田潜力的评估也显示了它们的巨大潜力。在未来以风能和太阳能间歇性能源生产为主的能源系统中,天然气系统提供的巨大灵活性和存储容量对于确保可再生能源的经济高效整合必不可少。
天然气储存设施可以大规模、低成本地储存可持续和波动能源,从而确保供应安全。它们提供并运行灵活性工具,从客户每小时到季节性运营需求,从而实现强大而有弹性的系统。天然气储存设施在未来还可以在储存可再生和低碳气体(包括氢气)方面发挥重要作用:经过一些改造的盐穴适合储存氢气,目前对枯竭气田潜力的评估也显示了它们的巨大潜力。在未来以风能和太阳能间歇性能源生产为主的能源系统中,天然气系统提供的巨大灵活性和存储容量对于确保可再生能源的经济高效整合必不可少。