对于大量气态氢的批量存储,地下盐穴是一种选择。纯氢可以被压缩并注入氢穴,稍后再以纯净但饱和的氢的形式取出。充满氢气的洞穴可以作为管道网络的备用。林德自 2007 年以来一直在运营世界上第一个商业氢气高纯度洞穴,我们通过位于德克萨斯州和路易斯安那州的氢气储存设施为一些管道氢气客户提供氢气。地下储存洞穴旨在在计划内和计划外的高峰需求期间为客户提供氢气。该储存设施集成在林德 340 英里(545 公里)长的氢气管道中,该管道为从德克萨斯州斯威尼到路易斯安那州查尔斯湖的 50 多家炼油厂和化工厂提供服务。在本文中,我们将解答有关洞穴中氢气储存的最常见问题。
如今,氢气已在美国工业环境中使用,因此运输和储存氢气所需的技术和知识已经存在。为了有效地运输或储存氢气,必须对气体进行大幅压缩以增加其能量密度,将其冷却成低温液体,或将其与另一种化学载体(例如吸附材料、液态烃、化学氢化物或金属氢化物)结合。压缩氢气通过卡车在管道拖车中或通过管道运输,类似于天然气的运输。液态氢通过超绝缘液体油罐车运输。当管道不可用时,油罐车通常用于将液态氢运输更长的距离,因为它们可以比气体管道拖车承载更大的容量。管道本身充当某种储存容器。与氢气的运输一样,其储存设施必须能够将低温或压缩氢气储存在绝缘液体罐(杜瓦瓶)或气体储存罐等容器中。对于长期储存,需要类似于天然气储存的地质散装地下储存洞穴。
气候变化预计将在全球范围内具有重大的经济,社会和环境影响。目前,储蓄储存的主要解决方案是在盐洞中,并且天然气储层耗尽。但是,所需的地质地层仅限于某些地区。为了增加存储氢的替代方法,本文提议将氢存储在湖泊,水力发电和泵送的水电储存库中用砾石装满的管道中。氢不太溶于水,无毒,不会威胁水生生物。结果表明,在200 m深度下,氢存储的升级成本为0.17 USD kg -1,这与其他大型氢存储选项具有竞争力。将氢存储在湖泊,水力发电和泵送的水电库中增加了储存氢的替代方法,并可能支持将来的氢经济发展。储层和湖泊中氢存储的全球潜力分别为3和12 PWH。湖泊和储层中的氢存储可以通过提供丰富且廉价的氢存储来支持氢经济的发展。
最大的压缩空气储能(CAES),抽水水电储存(PHS)和一些热量存储(TES)技术必须位于具有足够地理特征的区域;与通常是模块化的贝斯或飞轮不同,可以大多安装而没有这些限制。CAES和PHS通常包括水库和一个强大的储藏室。CAES技术需要非常大的空间(例如盐洞)来限制压缩空气(通常是天然气),而pHS则需要至少两个在不同海拔的水库。强力室,或压缩和发电设施,通常是一栋建筑物,可容纳用于从水库中存储和回收能源的压缩机,涡轮机和发电机。TES系统需要热源;但是,热源的类型将在其位置上构成限制。例如,使用太阳能塔的ESS具有很大的占地面积,通常位于阳光明媚的位置。使用热泵和发动机的系统的选址限制更少。
费米实验室主任 Lia Merminga(中)和 SURF 主任 Mike Headley(中右)剪彩,标志着为期三年的长基线中微子设施/深层地下中微子实验洞穴挖掘工作的完成。其他嘉宾包括 LBNF/DUNE–美国联邦项目主任 Adam Bihary、欧洲核子研究中心高级科学家和中微子平台项目负责人 Francesco Lanni、沙丘合作项目联合发言人 Sergio Bertolucci、URA 总裁兼首席执行官、DOE-OHEP 副主任 Regina Rameika、DOE 负责科学和创新的首席副副部长 Derek Passarelli、DOE 能源部长办公厅主任 Christopher Davis、DOE 科学办公室代理主任兼科学项目副主任 Harriet Kung、南达科他州副州长 Larry Rhoden、美国南达科他州参议员 Mike Rounds、美国南达科他州众议员 Dusty Johnson、坎皮纳斯大学校长 Antonio José De Almedia Meirelles 和 LBNF/DUNE-US 项目主任 Jim Kerby。
能源存储是有效利用可再生能源以及可再生能源在电网格中的重要元素。压缩的空气储能(CAE)(CAES)在提出的各种能源存储技术中,可以在艰巨的任务中发挥重要作用,即在大规模和长时间内(例如,对于大多数电池技术来说,相对)存储电能的艰巨任务。CAE在许多方面都像泵送的水电存储(PHS)一样,它是全球安装容量最大的,由Perez-Diaz等人引用为130 GW。(2015)。在pHS中,当有多余的电力时,将水泵入高架存储库,然后在需要电力时通过重力向下流动,并通过涡轮发电机向下流动。对于非常大的功率能力,pHS需要大型的自然土地来容纳水,而凯斯需要大型的地下可密封洞穴,这些洞穴可以容纳高压空气。
固定式氢燃料电池正成为一种提供清洁灵活电力的解决方案。可再生能源电解可以为燃料电池产生氢气,但使用时可能需要储存数天的氢气,以平滑可再生能源的变化。在使用氢气作为备用电源系统的情况下,也需要储存,必要的目标储存时间为 96 小时,以满足美国国家消防协会规定的要求。这是一个挑战,因为压缩气体或低温氢气储存在操作上成本高昂,而且对于这些储存时间,大规模储存效率低下,而用于储存的盐穴并不广泛,需要管道才能使其适用于更大规模的应用。因此,已经进行了大量工作,以确定在较低压力和非低温下运行的大规模氢气储存的材料解决方案。此外,在大多数低温氢气储存条件下,氢气会以“沸腾”的形式从储罐中自然流失。这些沸腾事件代价高昂,因此迫切需要能够有效捕获沸腾氢气的材料。
为了减少温室气体排放和化石燃料对环境的影响,摩洛哥决定增加可再生能源的使用。可再生能源的间歇性导致电网不稳定。储能是解决这一问题的合适方法。压缩空气储能是一种将能量以高压压缩空气的形式储存在地上储罐或地下洞穴中的技术。大规模存储压缩空气能量需要在盐洞或含水层中储存大量能量。本文旨在找出整合地下压缩空气储能技术的好处。摩洛哥的一个案例研究用于估算能源加储能的平准化成本 (LCOES)。分析了摩洛哥太阳能和风能发电厂的年容量系数以及地下洞穴的潜力。结果表明,对于在卡萨布兰卡地区安装的 100 MW 容量的系统,绝热压缩空气储能系统 (ACAES) 与风力涡轮机装置的组合可提供每千瓦时最低的电价,平均 LCOES 为 0.04 美元/千瓦时。
在英国,我们拥有丰富的可再生能源资源的理想组合,用于绿色氢的生产,广泛的海上气体生产,以支持蓝色氢的生产,以及以耗尽的气田和盐洞穴形式的出色氢存储资产,这些储备金和盐洞穴的形式也可以支持所需的CO 2用于蓝色氢的储存。这一切都得到了数十年的天然气存储和生产操作经验的支持。Hystorpor项目正在研究多孔介质用于氢存储的可行性,因为这些可以提供TWH存储能力。北海和爱尔兰海洋耗尽的气场被认为是对将来的氢存储特别有希望的,因为它们已证明存储储存库的容量,Caprock的完整性和数据可用性对于安全有效的运营至关重要,现有的基础设施可以快速开发大型氢存储。Hystorpor项目还考虑在英国盐水含水层和陆上气田中存储氢,因为这些项目还可以支持更接近消费者的未来氢网格操作。Hystorpor将评估潜在的盐水含水层以及陆上和海上气场,以确定现实世界中氢存储现场演示项目的低风险存储资产。
压缩空气储能 (CAES) 是众多储能选项之一,它可以以势能(压缩空气)的形式储存电能,并且可以部署在中央发电厂或配送中心附近。根据需求,可以通过使用涡轮膨胀机发电机膨胀储存的空气来释放储存的能量。该技术的一个吸引人的特点是过程相对简单——压缩机由可用电力驱动来压缩空气(充电),然后将空气储存在室内直到需要能量为止。在放电过程中,压缩空气通过涡轮膨胀机以产生电能回馈给电网。CAES 使其成为一个有吸引力的选择,其属性包括广泛的储能容量(从几兆瓦到几千兆瓦)、环保过程(尤其是在燃烧时不使用化石燃料)、长寿命和耐用性、低自放电(由于压力和温度损失)以及储存能量的成本低。该技术面临的一些挑战包括前期资本成本高、扩展步骤中需要加热、往返效率 (RTE) 较低、选址和许可挑战、难以识别和准备用于储存的天然洞穴、排放深度低以及响应时间较长。