摘要:准确预测剩余使用寿命(RUL)是保证锂离子电池安全稳定性的关键功能。为解决不同工况下的容量再生和模型适应性,提出了一种基于带自适应噪声的完全集合经验模态分解(CEEMDAN)和双向门控循环单元(BiGRU)的混合RUL预测模型。利用CEEMDAN将容量划分为固有模态函数(IMF)以降低容量再生的影响。此外,提出一种改进的灰狼优化器(IGOW)来保持BiGRU网络的可靠性。利用混沌帐篷映射提高GWO算法中初始种群的多样性,采用改进的控制因子和动态种群权重来加速算法的收敛速度。最后,进行容量和RUL预测实验,验证不同训练数据和工况下的电池预测性能。结果表明,所提出的方法仅使用 30% 的训练集即可实现小于 4% 的 MAE,并使用 CALCE 和 NASA 电池数据进行了验证。
无人管理的水下车辆通常部署在深海环境中,这些环境呈现出独特的工作条件。锂离子电池对于为水下车辆供电至关重要,至关重要的是要准确预测其剩余使用寿命(RUL)以保持系统的可靠性和安全性至关重要。我们提出了一个基于完整集合经验模式分解的残留寿命预测模型框架,并具有自适应噪声 - 时空卷积网(Ceemdan-TCN),该卷积网(Ceemdan-TCN)利用了扩张的因果汇报来提高模型捕获局部容量再生的能力,并增强了整体预测准确性。ceemdan被用来确定数据并防止由局部再生引起的Rul预测错误,并利用特征扩展来扩展原始数据的时间维度。NASA和CALCE电池容量数据集用作训练网络框架的输入。输出是当前预测的剩余容量,它与实际剩余电池容量进行了比较。MAE,RMSE和RE用作RUL预测性能的评估索引。在NASA和CACLE数据集上验证了所提出的网络模型。评估结果表明,我们的方法具有更好的寿命预测性能。同时,证明特征扩展和模态分解都可以提高模型的概括能力,这在工业场景中非常有用。
无人管理的水下车辆通常部署在深海环境中,这些环境呈现出独特的工作条件。锂离子电池对于为水下车辆供电至关重要,至关重要的是要准确预测其剩余使用寿命(RUL)以保持系统的可靠性和安全性至关重要。我们提出了一个基于完整集合经验模式分解的残留寿命预测模型框架,并具有自适应噪声 - 时空卷积网(Ceemdan-TCN),该卷积网(Ceemdan-TCN)利用了扩张的因果汇报来提高模型捕获局部容量再生的能力,并增强了整体预测准确性。ceemdan被用来确定数据并防止由局部再生引起的Rul预测错误,并利用特征扩展来扩展原始数据的时间维度。NASA和CALCE电池容量数据集用作训练网络框架的输入。输出是当前预测的剩余容量,它与实际剩余电池容量进行了比较。MAE,RMSE和RE用作RUL预测性能的评估索引。在NASA和CACLE数据集上验证了所提出的网络模型。评估结果表明,我们的方法具有更好的寿命预测性能。同时,证明特征扩展和模态分解都可以提高模型的概括能力,这在工业场景中非常有用。
在国内和国际文献中,在使用混合储能系统来减轻风能波动的策略方面取得了广泛的进步。Long [13]提出使用小波分解理论将风电场的原始输出功率分解为多个尺度,并采用模糊控制,以优化混合储能系统的初始功率分配。但是,小波分解层的选择会影响分解结果。Xianjun和Jia [14-15]提出了一种改进的小波包抑制策略,该策略不仅符合风电网连接标准,而且还降低了电荷分离开关频率,从而增强了存储系统的经济活力。Zhang [16]提出了平均滑动和EMD,以获得网格连接和储能功率信号,目的是最大化净福利以完成储能系统配置。guo [17]提出了通过考虑最新电荷(SOC)并配置额定功率和容量和容量和容量来分解混合能源系统功率。使用自适应变分模式分解(VMD)算法,Xiao [18]通过结合超级电容器和氢储罐的状态来分配内部功率,从而自适应地分解风力。fang [19]使用VMD和Wigner – Ville分布算法来处理原始功率数据,并应用了混乱粒子群优化算法来解决两阶段的每月和日前优化问题。Xidong [20]提出了一种方法,该方法将最佳的指数平滑与Ceemdan结合在一起,以获得与网格连接和存储的功率,从而促进了存储系统中的内部功率分配。