。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
n当今时代,研究蛋白质的结构和序列而不使用计算技术是不可想象的,必须强调玛格丽特·戴霍夫(Margaret Dayhoff)(1925-1983)的贡献,其在1960年代和1970年代的工作为Bio-Infortatics领域奠定了基础。2025年3月11日是Dayhoff的100周年,没有更好的约会来庆祝她的遗产并讨论她的主要成就。Dayhoff通常被称为生物信息学创始人,在1948年在量子化学领域获得了博士学位,当时只有不到5%的化学博士学位授予女性1。她对生物信息学的贡献始于她在1960年代对蛋白质序列的工作。在此期间,研究人员一直在识别蛋白质中氨基酸的序列,但是由于其固有的复杂性和当时的有限的综合资源,分析和比较蛋白质结构是具有挑战性的。为了允许研究人员更有效地寻找生育蛋白结构之间的模式和相关性,Dayhoff与她的同事Richard V. Eck,Marie A. Chang和Minnie R. Sochard一起出版了1965年的蛋白质序列和结构地图集,
[H] N [C @@ H](CCCNC(N)= N)C(= O)N [C @@ H](CCCNC(n)= N) (cccnc(n)= n)c(= o)n [c @@ h](cccnc(n)= n)c(= o)n [c @@ h](cccnc(n)= N) (cccnc(n)= n)c(= o)n [c @@ h](cccnc(n)= n)c(= o)n [c @@ h](cccnc(n)= n)c(= n)c(= o) (cccnc(n)= n)c(= o)ncc(= o)ncc(= o)ncc(= o)n [c @@ h](ccsc)c(= o)n [c @@ h] (c)c(= o)ncc(= o)n1ccc [c@h] 1c(= o)n [c @@ h](cc1 = cnc = n1)c(= o)n1ccc [c@h] 1c(= o) ([c @@ h](c)cc)c(= o)n [c @@ h](c(c)c(c)c(= O) (c)o)c(= o)ncc(= o)n1ccc [c@h] 1c(= o)n [c @@ h](cc1 = cnc = n1)c(= o)n [c @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e)[H] N [C @@ H](CCCNC(N)= N)C(= O)N [C @@ H](CCCNC(n)= N) (cccnc(n)= n)c(= o)n [c @@ h](cccnc(n)= n)c(= o)n [c @@ h](cccnc(n)= N) (cccnc(n)= n)c(= o)n [c @@ h](cccnc(n)= n)c(= o)n [c @@ h](cccnc(n)= n)c(= n)c(= o) (cccnc(n)= n)c(= o)ncc(= o)ncc(= o)ncc(= o)n [c @@ h](ccsc)c(= o)n [c @@ h] (c)c(= o)ncc(= o)n1ccc [c@h] 1c(= o)n [c @@ h](cc1 = cnc = n1)c(= o)n1ccc [c@h] 1c(= o) ([c @@ h](c)cc)c(= o)n [c @@ h](c(c)c(c)c(= O) (c)o)c(= o)ncc(= o)n1ccc [c@h] 1c(= o)n [c @@ h](cc1 = cnc = n1)c(= o)n [c @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@e)
背景:循环免疫细胞和代谢产物与冠状动脉粥样硬化有关,但是特定的因果关系以及代谢物作为介质的作用仍不清楚。方法:来自免疫细胞GWAS数据集的摘要统计数据(n = 3,757),循环代谢物(n = 8,299)和冠状动脉粥样硬化(病例n = 51,589;对照n = 343,079)使用BiDirectirectional Mendelal Mendelal Mendelal Mendelal Mendelal Mendelal Mendelal Ryneral分析。两步和多元孟德尔随机化被用来识别介导的代谢产物,并以逆差异加权(IVW)为主要方法。结果:我们确定了九种免疫细胞表型,包括特定的T细胞和单核细胞种群,与冠状动脉粥样硬化有显着的因果关系。此外,鉴定出41个跨四个代谢途径的血浆代谢产物,包括3-羟基-2-乙基丙酸和反式2-己烯酰甘氨酸甘氨酸甘氨酸。调解分析表明,3-羟基-2-乙基丙酸酯介导了IgD+ CD24+ B细胞对冠状动脉粥样硬化的影响(介导效应:0.961; 95%CI:95%CI:0.955-0.967),而Trans-2-Hexenoylglycine调节+ CD24+ b-b-b-cellsiors+ b-b-b-cellsiors+ b-b-cellsiiors, (中介效应:0.983; 95%CI:0.981–0.986)。结论:关键的免疫细胞表型和血浆代谢产物与冠状动脉粥样硬化有关。3-羟基-2-乙基丙酸和反式2-己烯酰基甘氨酸甘氨酸在调节B细胞功能中的作用表明了预防和治疗的潜在治疗靶标。关键字:免疫细胞,冠状动脉粥样硬化,血浆代谢产物,孟德尔随机化,B细胞功能
一名71岁的女性从未吸烟,患有乳腺癌的家族史(60年代初的母亲和妹妹),向她的初级保健医生出现,左臂和乳房疼痛。她在两周前在左臂上咬了一口,并接受了预防性强力霉素。体格检查显示2厘米温和嫩,左腋窝中没有皮肤病变,皮疹或乳房肿块。没有其他肿胀的腺体,其余的身体检查是正常的。她的初级保健医师考虑了莱姆病的诊断,并下令进行胸部X射线,完全的血液计数和莱姆抗体滴度,以进一步评估其他淋巴结肿大的原因。患者的病史对于大约一年前的右上臂0.4 cm x 0.7 cm原发基底细胞癌很重要,她进行了莫尔斯手术,具有阴性的表面和深层手术缘,没有复发的证据。她没有任何免疫抑制,暴露于过度紫外线辐射的病史或职业暴露会增加她患癌症的风险。她没有抽烟或喝酒。她的家族史对包括卵巢癌和结肠癌在内的其他癌症以及对母亲或妹妹的BRCA(乳腺癌基因)测试的结果是否定的。
HSCT中的护理需要高水平的专业化,并伴随着多方面的挑战,包括心理压力,情绪疲惫和道德困境。HSCT涉及通过强化化疗和全身辐射来破坏患者的骨髓功能,然后将造血干细胞移植以恢复血细胞的产生(Kanda,2015年)。1974年在日本引入的,每年进行5,500多个程序。然而,威胁生命的风险,例如移植物抗宿主病(GVHD)和严重感染(日本造血细胞移植数据中心,2023年)。
剑桥血液和干细胞生物库提供原代组织和血液衍生的样品,用于研究正常血液和免疫系统发展,干细胞生物学,癌症,血液学恶性肿瘤以及血液和免疫系统的疾病。Biobank拥有包括临床试验在内的各种项目和收藏品中的15000多个样本。我们的目标是促进研究并向服务用户提供专家研究支持。我们的小团队拥有核心样本处理和样本/数据管理设施,以及与临床团队联系以招募和跟进研究参与者的研究护士。成功的申请人将支持高级研究助理(SRA)进行生物库的运行。他们将发展独立和专业的责任,以维护和扩展现有服务,与服务用户和监督初级工作人员联系。此外,他们还将开发生物库的策略和过程,包括用于改进样本和临床数据管理的数据库开发。
尽管印度在细胞和基因疗法的生产中落后于中国,但新的生物技术初创企业却正在涌现,以应对这一挑战。免疫疗法和免疫功能目前正在开发CAR-T细胞疗法。ImmunoACT的NEXCAR19治疗获得了印度中央药物标准控制组织(CDSCO)的批准,用于治疗复发或难治性B细胞淋巴瘤和白血病。这种批准立场可以领导印度的土著CAR-T细胞疗法工作,NEXCAR19正在接受针对其他淋巴瘤和白血病类型的II期试验。同样,免疫疗法的IMN-003A CAR-T正在II期试验中,用于B细胞淋巴瘤和白血病。这些试验的成功完成有望满足印度有效癌症疗法的关键需求。最近,德国生物技术公司Miltenyi Biotec在印度开展业务,计划在海得拉巴建立中心。
mm是最遇到的血液系统恶性肿瘤,总生存率较低[1]。它在浆细胞中产生,导致单克隆副蛋白的积累,导致骨破坏并导致末端器官损伤[2]。MM的经典表现包括高钙血症,贫血,肾功能衰竭,复发性细菌感染,裂解骨骼病变和外胸腔软组织浆细胞瘤[3]。 虽然疾病的发生率正在增加,但仍被认为是一种难以治愈的疾病。 尽管可用的治疗选择,例如免疫调节药物(IMID),蛋白酶体抑制剂(PIS)和其他单克隆抗体,但该疾病倾向于最终复发并复发,这进一步降低了预后[4]。 mm引起了大量的发病率和死亡率,这需要进一步研究以找到解决该疾病的解决方案[1,3]。MM的经典表现包括高钙血症,贫血,肾功能衰竭,复发性细菌感染,裂解骨骼病变和外胸腔软组织浆细胞瘤[3]。虽然疾病的发生率正在增加,但仍被认为是一种难以治愈的疾病。尽管可用的治疗选择,例如免疫调节药物(IMID),蛋白酶体抑制剂(PIS)和其他单克隆抗体,但该疾病倾向于最终复发并复发,这进一步降低了预后[4]。mm引起了大量的发病率和死亡率,这需要进一步研究以找到解决该疾病的解决方案[1,3]。
摘要:磷酸二酯酶4(PDE4)的抑制剂是小分子药物,通过增加免疫细胞中cAMP的cAMP水平,引起了广泛的抗炎性效果。因此,PDE4抑制剂被积极地研究为以潜在炎症发病机理为特征的多种人类疾病中的治疗选择。树突状细胞(DC)是炎症和免疫反应的检查点,根据其激活状态而导致激活和衰减负责。本评论显示了证据表明,PDE4抑制剂通过减少炎症和Th1/Th17偏振细胞因子的分泌来调节炎症性DC激活,尽管尽管保留了共拟合分子的表达以及CD4+ T细胞激活潜力。此外,在存在PDE4抑制剂的情况下激活的DC会诱导效应T细胞的优先Th2偏斜,保留了Th2吸收趋化因子的分泌并增加T细胞调节介质的产生,例如IDO1,TSP-1,TSP-1,VEGGF-A,VEGGF-A和amphiregulin。最后,PDE4抑制剂选择性地诱导表面分子CD141/血栓瘤蛋白/BDCA-3的表达。这种细胞调整的结果是免疫调节的DC,与经典抗炎药物(如皮质类固醇)诱导的DC不同。将讨论对PDE4抑制剂治疗呼吸疾病(例如COPD,哮喘和COVID-19)的可能影响。