J.-L. Vay、A. Huebl,“等离子体粒子加速器大规模建模中原位/传输方法的应用”,ISAV'20 研讨会主题演讲 (2020);M. Larsen 等人,“ALPINE 原位基础设施:从稻草人的灰烬中崛起”,ISAV'17 会议论文 (2017)
○ 哪些基因编码了红细胞镰状化?○ CRISPR-Cas9 在原核生物(如细菌)中的自然机制是什么,它是如何被修改并用于编辑真核生物(有细胞核的生物)中的基因的?○ CRISPR 基因编辑技术如何应用于镰状细胞病患者?
文章标题:综述:真菌细胞中的 CRISPR/Cas12 介导的基因组编辑:植物真菌病理学的进展、机制和未来方向 作者:Chiti Agarwal[1] 所属机构:华盛顿州立大学 [1] Orcid ids:0000-0003-4125-2880[1] 联系电子邮件:chiti.agarwal@gmail.com 许可信息:本作品已根据知识共享署名许可 http://creativecommons.org/licenses/by/4.0/ 以开放获取的方式发表,允许在任何媒体中不受限制地使用、分发和复制,只要对原始作品进行适当的引用。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 上找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并已提交给 ScienceOpen Preprints 进行开放同行评审。 DOI:10.14293/PR2199.000129.v2 预印本首次在线发布时间:2023 年 6 月 8 日 关键词:CRISPR、CRISPR/Cas12、真菌病原体、植物病原体
尽管使用了药理疗法,但心脏病的发病率和死亡率仍然很高。本文旨在审查多种有希望的疗法,并强调干细胞可以发挥的创新作用。干细胞已被确定为心脏病理中当前主要医学和手术干预措施的潜在治疗替代方法,因为这些细胞具有多能功能,可以帮助心脏再生和重塑而不会损害疤痕组织。许多研究探讨了干细胞治疗心脏病中的初步安全性和功效,特别是缺血性心脏病(IHD),先天性心脏病(CHD)和扩张的心肌病(DCM)。IHD研究利用了各种干细胞类型的冠状动脉内和心脏内递送,并发现了心膜内递送自体性间充质干细胞注射到梗塞心脏组织中的功效。同样,CHD研究利用了心圈衍生细胞的冠状化递送以及良好的诺伍德程序,发现心脏功能和体细胞生长的益处。DCM在鼠模型中的研究以及随后的临床试验表明,通过肌肉卫星细胞标记的细胞类型,用肌肉功能改善的细胞类型移植,通过肾上部或跨心脏心脏心脏移植方法传递时的运动能力。虽然这些累积结果显示出希望,但需要更长的随访和较大的样本量来验证这种治疗方法在长期内对心脏疾病的疗效。干细胞与现有疗法结合使用,有可能减轻与心脏病理相关的严重发病率和死亡率。
抑制促凋亡信号死亡受体下调i。死亡受体(例如FAS和TRAIL受体)启动外部凋亡途径。II。 抑制死亡受体表达或功能可以预防凋亡。 b。抑制caspase激活i。 caspase是凋亡过程的关键执行者。 II。 抑制caspase激活,无论是直接或通过上游信号传导,都会阻止凋亡。 抗凋亡途径的激活a。 生长因子信号i。 生长因子,例如IGF-1和EGF,激活了PI3K/AKT和MAPK/ERK(例如PI3K/AKT)的促生物途径。 II。 这些途径通过抑制促凋亡蛋白并促进细胞存活来抑制凋亡。 b。 NF-κB途径i。 NF-κB转录因子诱导抗凋亡基因的表达,例如Bcl-2和IAP。 II。 NF-κB途径的激活可以抑制各种刺激的凋亡。 c。 Bcl-2家族蛋白i。 Bcl-2家族包括促凋亡和抗凋亡成员。 II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。抑制死亡受体表达或功能可以预防凋亡。b。抑制caspase激活i。 caspase是凋亡过程的关键执行者。II。 抑制caspase激活,无论是直接或通过上游信号传导,都会阻止凋亡。 抗凋亡途径的激活a。 生长因子信号i。 生长因子,例如IGF-1和EGF,激活了PI3K/AKT和MAPK/ERK(例如PI3K/AKT)的促生物途径。 II。 这些途径通过抑制促凋亡蛋白并促进细胞存活来抑制凋亡。 b。 NF-κB途径i。 NF-κB转录因子诱导抗凋亡基因的表达,例如Bcl-2和IAP。 II。 NF-κB途径的激活可以抑制各种刺激的凋亡。 c。 Bcl-2家族蛋白i。 Bcl-2家族包括促凋亡和抗凋亡成员。 II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。抑制caspase激活,无论是直接或通过上游信号传导,都会阻止凋亡。抗凋亡途径的激活a。生长因子信号i。生长因子,例如IGF-1和EGF,激活了PI3K/AKT和MAPK/ERK(例如PI3K/AKT)的促生物途径。II。 这些途径通过抑制促凋亡蛋白并促进细胞存活来抑制凋亡。 b。 NF-κB途径i。 NF-κB转录因子诱导抗凋亡基因的表达,例如Bcl-2和IAP。 II。 NF-κB途径的激活可以抑制各种刺激的凋亡。 c。 Bcl-2家族蛋白i。 Bcl-2家族包括促凋亡和抗凋亡成员。 II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。这些途径通过抑制促凋亡蛋白并促进细胞存活来抑制凋亡。b。 NF-κB途径i。NF-κB转录因子诱导抗凋亡基因的表达,例如Bcl-2和IAP。II。 NF-κB途径的激活可以抑制各种刺激的凋亡。 c。 Bcl-2家族蛋白i。 Bcl-2家族包括促凋亡和抗凋亡成员。 II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。NF-κB途径的激活可以抑制各种刺激的凋亡。c。 Bcl-2家族蛋白i。Bcl-2家族包括促凋亡和抗凋亡成员。II。 抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用II。抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。 C.治疗应用抗凋亡BCL-2蛋白(例如Bcl-2和Bcl-XL)的上调可以抑制线粒体凋亡途径。C.治疗应用
Diaialoganglioside GD2在包括神经母细胞瘤和黑色素瘤在内的各种人类肿瘤类型中表达。3F8结合后,对GD2的鼠单克隆抗体(MAB),神经母细胞瘤和某些黑色素瘤对通过人的补体杀死很敏感,而某些甲虫则不是。研究了补体介导的细胞毒性中这些差异的基础机制,将补体不敏感的黑色素瘤细胞系与衰减加速因子(DAF)的表达进行了比较,衰减加速因子(DAF),一种膜调节蛋白,一种保护血细胞,可保护血液细胞免受自动补体攻击。虽然DAF在神经母细胞瘤中是无法检测的,但它以补充不敏感的素瘤存在。当DAF的功能被抗DAF MAB阻断时,C3的摄取和补体介导的液位黑色素瘤系的裂解显着增强。f(ab')2个碎片在增强裂解方面与完整的抗DAF mAb一样有效。DAF阴性和DAF阳性黑色素瘤细胞系对Cobra毒液因子处理的血清对被动裂解具有相当抗性。数据表明,在某些肿瘤中,DAF活动解释了它们对涉及杀害的抵抗力。通过阻止DAF功能来使这些细胞对这些细胞的敏感性的能力可能暗示免疫疗法。
合成生物学和人工智能 (AI) 的进步为现代生物技术提供了新的机遇。高性能细胞工厂是工业生物技术的支柱,最终决定了生物基产品在与石油基产品的激烈竞争中是成功还是失败。迄今为止,合成生物学面临的最大挑战之一是以一致和高效的方式创建高性能细胞工厂。作为所谓的白盒模型,已经开发了许多代谢网络模型并将其用于计算菌株设计。此外,近年来,人工智能驱动的菌株工程取得了巨大进展。这两种方法都有优点和缺点。因此,人工智能与代谢模型的深度整合对于构建具有更高滴度、产量和生产率的优质细胞工厂至关重要。本综述总结了最新的先进代谢模型和人工智能在计算菌株设计中的详细应用。此外,还讨论了人工智能和代谢模型深度整合的方法。预计由人工智能驱动的先进机械代谢模型将为未来几年高效构建强大的工业底盘菌株铺平道路。
干细胞研究必不可少。过去几年,全球干细胞研究的进展表明,多能干细胞生物学(即将成体干细胞或体细胞重新编程为多能干细胞)的科学发展为未来提供了光明的机会。罗氏公司正在利用这些技术进行研究;然而,对这些技术的科学理解仍处于早期阶段。利用成体、胚胎和胎儿干细胞以及 iPSC 进行研究对于增进对疾病的了解和开发治疗方法是必不可少的。
我们已经使用阳离子脂质体来促进原代和培养细胞类型的腺相关病毒(AAV)质粒转染。AAV质粒DNA显示出比标准质粒的复合物高的表达水平。此外,观察到典型的脂质体介导的瞬时表达与标准质粒的转染所证明的瞬态表达不同,该基因的长期表达(> 30天)。染色体DNA的南部分析进一步证实了长期表达是由于AAV质粒转染组中的转基因而不是在标准质粒转染组中引起的。AAV质粒 - 脂质体复合物诱导的转基因表达水平与重组AAV转导相当。原发性乳房,卵巢和肺部肿瘤细胞可与AAV质粒DNA-脂质体复合物转染。转染的原发性和培养的肿瘤细胞即使在致命照射后也能够表达转基因产物。在正常人类外周血的新鲜分离的CD3+,CD4+和CD8+T细胞中也观察到了高级基因表达。转染效率范围为10%至501%,如白细胞介素2转染的细胞中细胞内白细胞介素-2水平评估。在原发性肿瘤和淋巴样细胞中表达转基因的能力可以应用于肿瘤疫苗研究和方案,最终可以对癌症和艾滋病中细胞免疫反应的高度特异性调节。
尽管在早期检测和个性化治疗方面取得了重大进展,但癌症仍然是全球死亡的主要原因之一。目前备受关注的一种可能的抗癌方法是开发能够特异性和高效地递送抗癌药物的纳米载体。由于石墨烯基材料具有高药物负载能力和生物相容性,因此在这方面是很有前途的纳米载体。在这篇综述中,我们概述了石墨烯基材料与正常哺乳动物细胞在分子水平以及细胞和亚细胞水平上的相互作用,包括质膜、细胞骨架和膜结合细胞器,如溶酶体、线粒体、细胞核、内质网和过氧化物酶体。同时,我们汇集了有关石墨烯基材料与癌细胞相互作用的知识,这些知识被认为是这些材料在癌症治疗中的潜在应用,包括转移治疗、靶向药物递送和向非癌症干细胞的分化。我们重点介绍了一些关键参数的影响,例如石墨烯基材料的尺寸和表面化学,它们决定了这些粒子在体内和体外的内化效率和生物相容性。最后,本综述旨在将石墨烯基纳米材料(特别是氧化石墨烯)的关键参数(例如尺寸和表面改性)与它们与癌细胞和非癌细胞的相互作用关联起来,以便设计和改造它们用于生物应用,特别是用于治疗目的。2022 作者。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
