在集成电路应用中的TIM使用的简化说明如图1所示。在系统的这种简化视图中,由高导热金属构建的集成散热器(IHS)将与周围或含量温度构建。硅死亡,当电路活跃时,会产生明显的热量。例如,在数据中心中使用的现代微处理器通常会以每平方厘米100瓦(100W/cm 2)的速度产生功率密度。挑战是将热量从硅死亡中消失,同时最大程度地减少死亡温度的升高(称为连接温度)。TIM的工作是为这种热量提供有效的管道,以逃避死亡。最小化连接温度升高的能力至关重要,因为半导体的有用寿命与其连接温度i成反比。这种现象通常被建模为热电阻,ja,它具有每瓦的开尔文单位(k/w)。当控制环境温度并已知功率耗散时,很容易计算硅连接温度:
A‐A 空对空 ac。英亩 A‐S 空对地 C.F.R.联邦法规 cm 厘米 CZMA 沿海区管理法 DoD 国防部 EIS 环境影响声明 EO 行政命令 ESA 濒危物种法 ft。 英尺或英尺 GIS 地理信息系统 GUNEX 炮兵演习。英寸 km 2 平方公里 m 米 mi 2 平方英里 MISSILEX 导弹演习 MMPA 海洋哺乳动物保护法 Navy 海军部 NEPA 国家环境政策法 nm 海里 nm 2 平方海里 NMFS 国家海洋渔业局 NOTMAR 航海通告 OPAREA 作战区 PTS 永久阈值转移 SOCAL 南加州 S‐S 地对地 SSTC 银链训练区 TTS 临时阈值转移 美国 美国 U.S.C.美国法典 USFWS 美国鱼类和野生动物服务院院子
在GPS正常工作条件下,MLS系统可以达到厘米级的定位精度。然而,在无GPS环境下,由于MLS的观测模式误差和视轴对准误差无法通过GPS信号进行标定或修正,定位精度可能降低到分米甚至米级。针对这一研究空白,本文提出一种新技术,适当结合稳健加权最小二乘(RWTLS)和全信息最大似然最优估计(FIMLOE),提高无GPS环境下MLS系统的定位精度。首先,建立MLS系统的坐标转换关系和观测参数向量。其次,利用RWTLS算法对三维点观测模型进行修正;然后利用FIMLOE标定激光扫描仪框架与IMU框架之间的不确定度传播参数向量和视轴对准误差。最后,在室内场景中进行实验研究,以评估所提方法的有效性。实验结果表明,所提方法能够显著提高 MLS 系统在 GPS 拒绝环境中的定位精度。
Elaine Petro 教授 康奈尔大学 分子离子束和束表面相互作用的多尺度建模 电喷雾离子源是卫星推进、生化分析和各种表面处理行业领域的使能技术。这些应用推动了对扩展离子束的物理和粒子碰撞的化学的更深入了解。电喷雾离子羽流对最先进的等离子体建模技术提出了挑战,因为关键过程发生的长度和时间尺度范围很广(即纳米级发射点和厘米级操作体积)。伴随着这些空间梯度的是离子和中性群体中的大密度和速度梯度。此外,电喷雾羽流是具有非麦克斯韦分布的非中性等离子体。我们介绍了最先进的分子离子羽流动力学和化学数值模型,这些模型对于探索设计变量、了解操作条件和提高性能必不可少。除了卫星推进中的应用外,我们还将讨论在其他相关领域利用这些离子源的机会。
摘要:全球导航卫星系统反射测量 (GNSS-R) 仪器的测高性能取决于接收器的带宽和信噪比 (SNR)。测高延迟通常根据直接信号波形的峰值与反射信号波形导数的最大值之间的时间差计算得出。机载微波干涉反射仪 (MIR) 在澳大利亚和塔斯马尼亚之间的巴斯海峡收集的双频数据表明,这种方法仅适用于平坦表面和大带宽接收器。这项工作分析了使用 GNSS-R 计算测高可观测量的不同方法。一种提出的新方法,窄带代码(例如 L1 C/A)的 3 次导数的峰值到最小值 (P-Min3D) 和大带宽代码(例如 L5 或 E5a 代码)的峰值到半功率 (P-HP) 在使用真实数据时表现出更好的性能。这两种方法也与峰峰值 (P-P) 和一阶导数峰峰值 (P-Max1D) 方法进行了比较。这些方法之间的主要区别在于确定反射信号波形中的延迟位置以计算高度可观测量。比较不同方法、波段和 GNSS-R 处理技术的机载实验结果表明,可以实现厘米级精度。
摘要 — 室内定位和情境感知正成为各种应用的两项关键技术。最近,通过采用超宽带 (UWB) 技术,人们已经实现了厘米级精度和低功耗的实时定位系统。自 2015 年以来,Decawave 已生产出商用 UWB 集成电路,利用飞行时间测量技术来估计两个代理之间的距离。这项工作介绍了两台 Decawave 收发器(DW1000 和 2020 年发布的新款 DW3000)之间的性能研究。测试空间包括视距内区域和由 UWB 无线电信号反射到各种障碍物而引起的各种非视距条件。最后,我们分析了不同配置下的功耗,并对两台设备进行了比较。结果表明,两者在 1 米以上的测量范围内具有相似的精度,而考虑到较短的距离,DW3000 的平均性能要好 33.2%。此外,新收发器在实时测量过程中的功耗降低了近 50%,平均值达到 55 mW。索引术语 — 超宽带技术、超宽带通信、物联网、室内定位、功耗
摘要 本文介绍了中程地面激光扫描 ( TLS ) 的起源和发展,主要跨越从 20 世纪 50 年代到本文出版之时。特别关注了将场景的物理尺寸记录为点云的硬件和软件的发展。这些发展包括中程精度、重复性和分辨率参数——在记录距离最远一公里的建筑物和景观尺度的物体时,精度达到毫米和厘米级。本文分为两部分:第一部分从早期的空间和国防应用开始,第二部分探讨了 20 世纪 90 年代围绕 TLS 技术形成的测量应用。具有讽刺意味的是,中程 TLS 的起源始于空间和国防应用,这影响了传感器和通过自动驾驶汽车进行信息处理的发展。其中包括行星探测器、航天飞机、机器人和陆地车辆,这些车辆设计用于在太空和战区等恶劣环境中进行相对导航。在撰写本文的 10 年期间,我们咨询了中端 TLS 社区的关键人物。多语言和多学科文献综述(包括用中文、英文、法文、德文、日文、意大利文和俄文撰写或制作的媒体)也是本研究不可或缺的一部分。
摘要:数据存储的需求正在以前所未有的速度增长,并且由于其成本,空间需求和能源消耗,目前的方法不足以适应这种快速增长。因此,在极端条件下,需要使用具有高容量,高数据密度和高耐用性的新的,持久的数据存储介质。DNA是最有前途的下一代数据载体之一,其存储密度为每立方厘米的101位数据,其三维结构使其比其他存储介质大约八个数量级密度。DNA在PCR期间或在细胞增殖过程中的复制过程中的DNA扩增能够快速且廉价地复制大量数据。此外,如果在最佳条件下储存并脱水,DNA可能会忍受数百万年的数百万年,从而使其对数据存储有用。微生物上的许多空间实验也证明了它们在极端条件下的非凡耐用性,这表明DNA可能是数据耐用的存储介质。尽管剩下一些挑战,例如需要重新使用寡核苷酸快速且无误合成的方法,但DNA还是未来数据存储的有前途的候选人。
描述了一种通过光电检查 9,440 埃单位的水蒸气吸收带来测量微小绝对湿度变化的仪器。该仪器由一个小光源组成,该光源将其辐射通过不到一米半的空气路径发送到分散系统。然后,将得到的光谱落在两个真空光电管上;一个位于 9,400 埃单位的水蒸气吸收带中心,另一个位于 8,000 埃单位,不存在水蒸气吸收带。随着空气路径中的绝对湿度发生变化,带区域中的光电管会受到影响;而参考光电管则不受影响。光电管布置在放大电路中,以放大变化湿度的影响。该仪器使用便携式微安表代替所有以前光谱湿度计的灵敏电流计。可以测量 143 厘米空气路径上 2 至 8 X 10~5 厘米可降水路径的湿度变化。对仪器的小灵敏范围进行了调查,结果表明,在目前可用的设备下,该装置仅限于在小湿度范围内使用。T
应将更多的学习时间用于处理整数和位值,而不是任何其他主题。1.扩展对整数关系和位值的位值理解,包括按百位数、十位数和个位数分组。2.培养加法和减法策略的能力。3.培养对标准计量单位的理解。(1) 学生使用十进制系统扩展对位值的理解。这包括以个位数、五位数、十位数和百位数计数的想法,以及理解涉及这些单位的数字关系,包括比较。学生理解以十进制表示的 1000 以内的多位数字,认识到每个位置的数字代表百位数、十位数或个位数。(2) 学生利用对加法的理解,熟练掌握 20 以内的加减运算。他们使用模型展示对 1000 以内的加减运算的理解。他们开发、讨论并使用高效、准确且可推广的方法,使用十进制符号、对位值的理解和运算属性来计算整数的和与差。他们选择并准确应用适合上下文和所涉及数字的方法来心算和与差。(3) 学生对标准测量单位(厘米和英寸)有了理解,他们使用标尺和其他测量工具,并理解线性测量涉及单位的迭代(重复)。他们认识到单位越小,覆盖给定长度所需的迭代次数就越多。