AEC 陆军环境中心 ASTM 美国材料与试验协会 ATI 分析技术公司 bbl 桶(相当于 42 加仑) bgs 地下水位测量 EPA-DTSC 加利福尼亚州环境保护署、有毒物质控制部 CAS 化学文摘社 cm 厘米 CPT 锥形穿透仪测试 CSC 计算机科学公司 CSCT 场地特性技术联盟 DFM 柴油 船舶 DHS 加利福尼亚州卫生服务部 DoD 国防部 DOE 能源部 DOT 运输部 DQO 数据质量目标 EMMC 环境监测管理委员会 EPA 美国环境保护署 ETI 环境技术倡议 ETV 环境技术验证 ft 英尺 FVD 荧光与深度 GC/FID 气相色谱/火焰离子化检测器 HNTS 碳氢化合物国家试验场 HSA 空心钻头 Hz 赫兹 IDW 调查衍生废物 IR 红外线 IRP 安装恢复计划ITVR 创新技术验证报告 LIF 激光诱导荧光 LOD 检测限 m 米 � m 微米 mg/kg 毫克每千克 mg/L 毫克每升 m/min 米每分钟
ION SCV011 被称为“Savvy Simon”,将搭载 16 个有效载荷,其中一个未公开:Kelpie-2,一颗由 AAC Clyde Space 为 ORBCOMM 设计和建造的 3U 卫星,将根据空间数据即服务协议,向 ORBCOMM 及其客户独家提供自动识别系统 (AIS) 数据;EPICHyper-2,一颗由 AAC Clyde Space 设计和建造的 6U EPIC 立方体卫星,将向其合作伙伴加拿大地球观测公司 Wyvern Inc 独家提供高光谱数据;Spei Satelles (SpeiSat),一颗由都灵理工学院和意大利航天局开发的纳米卫星,配备先进的传感器来研究太空环境。该卫星还将通过一本印有 2020 年出版物的纳米书传递希望与和平的信息; Mission 1 是 Outpost 的首个卫星项目,旨在为该公司的渡轮航空电子系统获得重要的飞行经验,之后将开始首次返回地球的任务;NaviLEO™ 是由 SpacePNT 开发的一款低成本、高性能全球导航卫星系统 (GNSS) 接收器;ODIN Space 的 ODIN-DU1 是一款托管传感器,也是首次安装分布式网络,将提供有关致命亚厘米碎片的新数据;RAL Space 的 UKRI SWIMMR-1 是一款空间辐射监测器,旨在收集空间天气监测数据。ION 还将搭载两台 Alba Orbital 的 AlbaPod 6P PocketQube 卫星部署器,将六颗 PocketQube 卫星送入轨道。
德国航空航天中心(DLR)的微波和雷达研究所已开发并构建了一个称为IOSIS(空间中卫星成像)的实验雷达系统。该系统的总体目标是研究概念的研究,用于高分辨率在低地球轨道(LEO)中的高分辨率雷达图像。与现有的基于雷达的空间监视系统(具有单静态天线构型)相比,将来的ISIS不使用一种,而是使用一个空间分布的天线,以处理即将到来的轨道卫星量,并且更重要的是实现双静态成像的几何形状。后者与现有的基于单声道雷达的卫星图像相比,允许增强图像信息内容。本文首先概述了使用反合成孔径雷达(ISAR)的基于雷达卫星成像的基本理论。进一步解决了IOSIS系统的简短描述。根据模拟成像结果说明了对雷达图像的大气影响,并且基于干涉成像结果引入了多通道系统的优势,从而在三个维度中提供了空间分辨率。通过在厘米区域中具有空间分辨率的真实空间对象的IOSIS系统获得的测量结果显示了连续实现的误差校正策略。
通常,MB 的总占地面积在平方毫米甚至平方厘米量级,或者电极厚度限制在 10 毫米以内,对于 3D 配置,体积则为亚立方毫米。根据微电极的几何形状,MB 可分为 1D 形状、2D/3D 堆叠结构和 2D/3D 平面配置。15 – 17 与传统电池的三明治结构(仅允许离子沿垂直方向扩散)不同,MB 独特的电极结构可以缩短离子传输路径,提高倍率性能和功率密度。特别是具有叉指微电极的平面 MB 表现出多方向离子扩散机制,极大地促进了反应动力学。 18,19 此外,从结构角度考虑,采用浆料浇铸法制备的传统电池难以满足微电子的美学多样性和形状可定制性要求。20 – 22 值得注意的是,MB 可以通过各种微加工方法解决上述形状多样性和定制结构的问题,例如光刻、23,24 激光划片、25 – 27 电沉积、28,29 丝网印刷、30,31 和 3D 打印技术。32 – 34 光刻
化学浓度和水温仅以公制单位给出。水中的化学浓度以毫克每升 (mg/L) 或微克每升 (ng/L) 为单位。毫克每升是表达每单位体积(升)水中溶质质量的单位。一千微克每升相当于 1 mg/L。对于小于 7,000 mg/L 的浓度,数值与百万分率浓度大致相同。比电导率以 25°C 下的微西门子每厘米 (^iS/cm) 为单位,氧化还原电位 (Eh) 以毫伏 (mV) 为单位。放射性以居里表示,居里是每秒产生 3.7x10'° 衰变的放射性衰变量,或以皮居里每升 (pCi/L) 或皮居里每克 (pCi/g) 表示,皮居里每升是每分钟在单位体积 (升) 的水或质量 (克) 的沉积物中产生 2.2 次衰变的放射性衰变量。底部沉积物中的化学浓度以克每千克 (g/kg) 或微克每克 (fig/g) 表示。克每千克等于千分之一 (ppt)。毫克每千克和微克每克等于百万分之一 (ppm)。微克每千克等于十亿分之一 (ppb)。
(1) 学生拓展对十进制系统的理解。这包括以五、十、百、十和个的倍数计数的概念,以及涉及这些单位的数字关系,包括比较。学生理解以十进制表示的多位数(最多 1000),认识到每个位置上的数字代表千、百、十或个位数(例如,853 是 8 个百位 + 5 个十位 + 3 个个位)。 (2) 学生利用对加法的理解,熟练掌握 100 以内的加减法。他们通过应用对加减模型的理解来解决 1000 以内的问题,并利用对位值和运算性质的理解,开发、讨论和使用高效、准确且可推广的方法来计算十进制整数的和与差。他们选择并准确应用适合上下文和所涉及数字的方法,心算只有十位或只有百位的数字的和与差。 (3) 学生认识到需要标准测量单位(厘米和英寸),并且他们使用尺子和其他测量工具,同时理解线性测量涉及单位的迭代。他们认识到单位越小,覆盖给定长度所需的迭代次数就越多。 (4) 学生通过检查形状的边和角来描述和分析形状。学生调查、描述和推理如何分解和组合形状以形成其他形状。通过构建、绘制和分析二维和三维形状,学生为以后年级理解面积、体积、全等、相似性和对称性奠定了基础。
摘要 — 纳米结构氧化锌 (ZnO) 因其独特的特性和在不同领域应用的可能性在过去几年中引起了人们的广泛关注,包括用作气体传感器件中的活性层和场发射器件的有前途的发射器。虽然它对 FE 目的很有趣,但这种材料的合成可能很复杂且与微电子工艺不兼容。为了解决这个问题,本文探讨了通过非催化剂热氧化法生长 ZnO 纳米线。通过拉曼光谱、X 射线光电子能谱、X 射线衍射和扫描电子显微镜详细表征了原生纳米材料。这些表征证实,所采用的工艺在整个基底表面获得高密度的 ZnO 纳米级结构方面取得了成功。ZnO 纳米线的直径范围为 30 至 100 纳米,长度可达 4 微米。获得了高效的电子场发射特性,开启电场较低(2.4 伏/微米,电流密度为 360 皮安/平方厘米)。基于图像处理的创新系统允许在器件的整个有效区域内进行电流映射,从而提供有关发射电流均匀性的信息。这些结果表明,所采用的低复杂制造程序以及 ZnO 纳米材料本身适用于基于场发射的器件。
条件:在作战环境中,您会遇到一名因创伤而导致呼吸道严重阻塞的伤员。您已拥有使用适当方法对患者进行插管所需的所有设备:电池(适合喉镜尺寸)、带刀片的喉镜(直的和弯的,尺寸 1-4)、喉镜片的备用灯泡、气管内导管 (ET) (7-8.5 厘米)、气囊面罩 (BVM)、商用气管内 (ET) 导管支架(如果有)、抽吸设备(壁挂式或便携式)、抽吸套件、脉搏血氧仪、呼气末二氧化碳 (ETCO2) 比色装置、ETCO2 波形二氧化碳监测仪、10 立方厘米 (cc) 注射器、1/2 英寸胶带、剪刀、听诊器、探针、神经肌肉阻滞剂、镇静剂。您将查看医疗记录、使用双因素验证来验证患者身份、解释程序、收集所有设备和用品、对患者进行洗手、遵守标准预防措施并检查患者是否有任何已知的过敏行为体内物质隔离程序。此任务的一些迭代应在 MOPP 4 中执行。标准:使用适当的方法,按照正确的顺序对患者进行插管,不会对患者造成进一步伤害,IAW 标准医疗操作指南 (SMOG) 无误,使用任务 GO/NO-GO 检查表。
摘要 机载激光扫描 (或激光雷达) 已成为获取数字地形模型数据的一种非常重要的技术。除此之外,该技术越来越多地用于获取点云,以对各种物体进行建模,例如建筑物、植被或电力线。作为一种主动技术,机载激光扫描即使在图像对比度较差的地形上也能提供高可靠性。该技术的精度通常规定为一到两分米的数量级。由于其主要用于数字地形建模,迄今为止对机载激光扫描精度潜力的检查主要集中在高度精度上。随着该技术用于一般重建任务和激光扫描仪系统分辨率的提高,激光扫描仪点云的平面精度成为一个重要问题。除了激光测距仪和偏转镜系统中的误差外,机载激光扫描仪的误差预算还受到用于传感器姿态 [位置和方向] 确定的 GPSI INS 系统的强烈影响。这些系统的误差通常会导致激光扫描仪数据条带变形,并且可能表现为激光扫描仪数据块中相邻条带重叠区域的差异。本文介绍了在 TIN 结构上实施的最小二乘匹配,作为确定激光扫描仪
摘要:在过去的十年中,在不同的科学和工程领域中使用石墨烯的速率仅增加,并且没有表现出饱和的迹象。同时,最常见的高质量石墨烯的来源是通过化学蒸气沉积(CVD)在铜箔上的生长,随后的湿传输步骤,由于铜箔的依从性带来了环境问题和技术挑战。为了克服这些问题,已经使用了沉积在硅晶片上的薄铜纤维,但是石墨烯生长所需的高温可能会导致铜纤维的侵蚀,并在获得均匀的生长方面遇到挑战。在这项工作中,我们探索蓝宝石作为石墨烯直接生长的底物,而无需在常规金属CVD温度下任何金属催化剂。首先,我们发现在生长之前退火是提高可以直接在此类底物上生长的石墨烯质量的关键步骤。在退火蓝宝石上生长的石墨烯是均匀的双层,并且在文献中发现了一些最低的拉曼D/G比。此外,已经进行了干燥转移实验,该实验提供了直接衡量蓝宝石/石墨烯界面上相互作用范围的粘附能,强度和相互作用范围。石墨烯对蓝宝石的粘附能低于铜在铜上生长的石墨烯的粘附能,但是石墨烯 - 蓝宝石相互作用的强度更高。使用拉曼,SEM和AFM以及断裂力学概念评估了几厘米尺度转移的质量。关键字:石墨烯的生长,干燥转移,蓝宝石,粘附强度,粘附能基于对这项工作中合成石墨烯的电气特性的评估,这项工作对几种潜在的电子应用有影响。