对于军用飞机而言,燃气涡轮发动机制造商和最终用户面临的一个关键问题就是耐久性。尤其是加力燃烧段的条件非常恶劣,发动机喷嘴的设计寿命通常只有涡轮发动机其他硬件的一半。目前的喷嘴基于由密封件和襟翼制成的轴对称可变喷嘴。这些组件必须承受极端温度(通常超过 1000°C)以及与加力燃烧器点火相对应的快速热循环。此外,加力燃烧段通常具有燃烧功能不均匀的特点,这会在某些喷嘴瓣上产生热条纹。因此,这些部件会受到非均匀热流的影响,襟翼和密封件的重叠设计尤其明显,从而在整个宽度上产生高热应力。镍基合金通常用于发散襟翼和密封部件。严酷的热机械环境使镍基部件产生大量开裂,再加上高温 1 导致的蠕变变形。结果是部件拆卸增加,直接影响可操作性、维护和成本。军用发动机对热段部件更长使用寿命和更高推重比的追求为陶瓷材料打开了大门。陶瓷基复合材料 (CMC) 适用于暴露在高温(高达 1000°C)下的加力燃烧段,包括高热梯度。因此,人们继续对在军用燃气涡轮发动机中开发、测试和部署 CMC 感兴趣,一些开发已经取得成功。这是为 F/A-18 E/F 超级大黄蜂 2 战斗机提供动力的 F414 发动机喷嘴引入 SiC/C CMC 的情况,以及为阵风 3 战斗机提供动力的 M88 发动机喷嘴外襟翼引入 C/SiC CMC 的情况。考虑用于燃气轮机部件的 CMC 涵盖了通过化学气相渗透 (CVI)、溶胶凝胶路线、聚合物渗透和热解 (PIP) 和熔融渗透 (MI) 4 制造的各种纤维和基质。所得材料能够承受排气喷嘴的高温和热疲劳。然而,CMC 组件的耐久性与其抗氧化性直接相关,这会影响其热机械潜力并导致部件破裂。已经对几种 CMC 密封件进行了地面测试,并在具有代表性的全地面发动机寿命后测量了机械性能。近几年,斯奈克玛推进固体公司 (SPS) 开发了先进的 SiC/SiC 和 C/SiC 材料,包括多层编织和自密封基质。普惠公司和空军研究实验室正在考虑将这些材料用于 F100-PW-229 发动机喷嘴发散密封件,该密封件为 F16 和 F15 战斗机提供动力。本文介绍了发动机经验和后测试特性的结果。将讨论材料系统对燃气轮机喷嘴应用的适用性。
本综述介绍了A 2 M 3 O 12和相关陶瓷家族中的材料历史,包括它们的异常热膨胀及其对机制的当前理解,以及相关因素,例如水平镜和单斜骨对正常相位过渡。在当前的知识,挑战和应用机遇方面介绍了其他特性,包括热机械,热和离子传导以及光学特性。最大的挑战之一是整体的生产,总结了整合和烧结的各种方法。这些陶瓷与其他材料相结合时具有很大的希望,并且提出了此类复合材料的最新进展。这些问题是在负和接近零热扩展陶瓷的潜在应用的背景下,这仍然对未来的材料研究人员面临挑战。
作为一个在医疗设备行业工作的人,为医院和外科医生提供了20多年的支持,我亲身知道,对于患者的安全,适当的证书是多么重要。但是,当前的供应商凭证系统是分散的,昂贵且效率低下的 - 在不增强护理的情况下创造了不必要的障碍。我个人经验丰富的供应商证书公司,收费300-800美元,同时未能为医院或患者提供真正的价值,这通常是不幸的医院入院所需的文件。通过第1372号法案标准化该过程将消除这些效率低下,以确保所有医疗设备代表都符合监管和合规标准,同时减轻行政负担和成本。通过这项法案对于简化凭证,改善医院运营以及最终优先考虑患者安全至关重要。
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
方法,将来自摩洛哥栽培树的单叶用于本研究。DNA提取。根据制造商的说明,使用Illumina Truseq套件构建了配对的测序库。该库是在配对端,2×150bp格式的Illumina Hi-Seq平台上进行排序的。用三件v0.33(Bolger,Lohse和Usadel 2014)修剪了所得FASTQ文件的适配器/引物序列和低质量区域。修剪序列由黑桃v2.5组装(Bankevich等人2012)随后使用Zanfona V1.0(Kieras 2021)进行完成步骤,以基于相关物种中保守的区域加入附加的重叠群。
神经刺激是一个快速增长的市场,在2027年的年增长率为8.5%,预计全球市场销量为410亿美元,[1],全球医疗技术公司以及试图商业化技术的初创企业。[2,3]要在植入医学中推动这场革命,需要新的功率来源,这可以为植入物提供安全,稳定的能量,同时使这些设备的微型化到空前的规模,以最大程度地减少植入物对患者的影响。植入物设备的功率需求通常位于100 nW至1 MW的范围内[4-6],并且能量和功率密度增加的功率源超出了当前功能,可以使感应,电子刺激或药物输送的新功能非常不可能。迄今为止,可植入的设备由诸如Li – I 2 Pacemaker电池[7,8]等电池提供动力,其电量和重量的能量密度分别为≈1000WH-1和≈270WH kg-1,[9],或通过无线能量传输,例如RF传输[10,1111]或Ulteras-Asound。[12]由于其性质,电池不能在不牺牲大量的能量存储能力的情况下轻松地微型化,[13],并且由于使用天线区域通过感应尺度传输的功率,无线能量传递的微型化电位也受到限制。此外,Li – I 2起搏器电池是不可充电的电池,这意味着
仅加热和冷却就占总能源使用量的一半。由于其中 66% 的能源来自化石燃料 [2],因此,高效隔热和冷却材料对于降低人为 CO 2 排放至关重要。除了提供所需的热性能外,此类材料还应安全、可回收,并在制造和运行过程中消耗最少的能量。最先进的绝缘材料还不能满足这些要求。聚合物基绝缘体(例如发泡/挤塑聚苯乙烯和聚氨酯泡沫)的热导率相对较低,但耐火性和报废可回收性有限。尽管无机绝缘体具有固有的耐火性,但玻璃棉和矿棉在制造过程中涉及高能量过程,并且表现出被认为对人体健康有害的纤维形态。气凝胶是一种有吸引力的高性能绝缘无机材料,但其高成本迄今为止限制了其在小众应用中的使用。现有绝缘材料的优点和缺点为开发新技术提供了机会。多孔陶瓷因其成本低、耐火、可回收和导热系数相对较低等优点,最近作为替代隔热材料受到了越来越多的关注。[3–7] 除了隔热之外,多孔陶瓷还被用于通过实现建筑元素的被动冷却来改善建筑物的热管理。[8] 被动冷却依赖于渗入陶瓷孔隙中的水的蒸发,在蒸汽压缩技术出现之前,这种机制长期用于降低食物和水的温度。由于孔隙是隔热和蒸发冷却所需的关键结构特征,因此制造具有可控孔隙率的陶瓷对于开发用于建筑热管理的节能技术具有巨大潜力。在本研究中,我们使用湿泡沫模板 3D 打印分层多孔陶瓷,并研究其用于建筑元素热管理的隔热和蒸发冷却性能。分层多孔结构设计为包含大量大孔,可降低材料的导热性,同时还显示实现毛细管驱动被动冷却所需的微米级孔隙。利用粘土作为可回收、廉价且广泛可用的材料资源,我们首先开发了湿泡沫
摘要:与单个有机或无机固体电解质相比,陶瓷中的聚合物复合固体电解质(PIC-CSE)具有重要的优势。在常规的PIC -CSE中,离子传导途径主要局限于陶瓷,而与陶瓷 - 聚合物界面相关的更快路线仍被阻塞。这一挑战与两个关键因素有关:(i)由于陶瓷聚集而建立广泛而不间断的陶瓷 - 聚合物接口的困难; (ii)陶瓷 - 聚合物界面由于其固有的不兼容而对导电没有反应。在这里,我们通过引入与聚合物兼容的离子液体(PCIL)提出策略,以在陶瓷和聚合物基质之间进行介导。这种介导涉及与陶瓷表面上与李 +离子相互作用的极地PCIL以及PCIL和聚合物链的极性成分之间的相互作用。该策略解决了陶瓷聚合问题,从而导致均匀的图片-CSE。同时,它通过建立互穿的通道来激活陶瓷 - 聚合物界面,从而促进Li +离子在整个陶瓷相,陶瓷 - 聚合物界面和中间途径的有效运输。因此,获得的PIC -CSE表现出高离子电导率,特殊的柔韧性和稳健的机械强度。其锂金属袋细胞的高能量密度为424.9 WH kg -1(不包括包装膜)和穿刺安全性。这项工作为使用商业生存能力设计PIC -CSE铺平了道路。■简介包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.
摘要:由于其特征,包括10-15 pc/n的D 33和高稳定性,直至1000℃以上的温度,因此,含有壁炉晶体的极性玻璃 - 螺旋孔被认为是在高温下需要压电的应用的高效材料。在本文中,我们研究了Sr-Fresnoite(STS)玻璃训练的钡取代。研究了两个方面:首先,取代对结晶的优先方向的影响,其次,玻璃 - 凝聚力在高温下产生和传播表面声波(SAW)的能力。XRD分析表明,BA的替换为10 at。替代,使我们能够保持壁画晶体(00L)平面的强烈优先取向,低于表面以下1 mm以上。较高的替代水平(25和50 at。%)诱导与表面机制竞争的非方向的体积结晶机制。锯设备是用0、10和25 at。%ba取代的玻璃室底物制造的。温度测试揭示了所有这些设备的频率和延迟的高稳定性。玻璃 - 驾驶次数为10%Ba取代的玻璃训练性给出了锯信号的最强振幅。这归因于高(00L)优先方向以及缺失的体积结晶。
目的:膜生物反应器(MBR)系统被广泛用于废水处理,但膜结垢仍然是一个主要挑战。本研究旨在比较陶瓷膜在两个操作模式(例如侧面和淹没)中的结垢行为和过滤性能。方法:评估了物理和化学清洁对去除结垢和过滤性能的影响。测量了关键参数,例如结垢速率,细胞外聚合物(EPS)浓度和化学氧需求(COD)去除效率。傅立叶转换红外光谱(FTIR)用于识别膜表面上的结垢成分。结果:与侧流MBR相比,淹没的MBR表现出更高的总结垢(93.6%)(82.3%),可逆犯规速率分别为50.9%和56.2%,而不可逆转的结垢率分别为42.7%和26.3%。EPS水平从淹没的MBR中的255 mg/GVS降至120,而侧流MBR中的65个降低。与淹没的MBR相比,侧流MBR的COD去除效率(88%)更高(82%)。FTIR分析揭示了膜蛋糕层上的结垢成分,例如腐殖酸,多糖,卤化物和烷基卤化物,有助于孔隙阻塞和蛋糕形成。结论:该研究表明,侧流MBR在降低和增强过滤性能方面的表现优于淹没MBR,强调了配置和清洁策略在优化陶瓷膜应用中用于废水处理的重要性。