电弧增材制造 (WAAM) 是一种允许高效原位生产组件或再制造的工艺,它能够以更高的沉积速率和更低的成本进行生产。然而,WAAM 组件在沉积过程中会受到散热的影响,从而导致粗柱状晶粒生长,造成机械性能较差,限制工业应用。因此,本研究调查了将 Al 2 O 3 陶瓷粉末颗粒孕育剂引入 AWS A5.9 ER308LSi 不锈钢壁结构中的作用,通过细化晶粒工艺来提高机械性能。在沉积过程中,当温度降至 150ᵒC 时,手动将 Al 2 O 3 陶瓷粉末颗粒添加到每一层。为了弥补这些知识空白,我们进行了一系列完整的拉伸测试。制造了 WAAM 壁并分析了样品的微观结构。结果表明,WAAM SS308LSi 部件在沉积方向上的最高抗拉强度为 560 MPa,与未接种样品相比增加了 6%。这种改进是由于晶粒细化和异质成核的成功。该研究证明了该技术在 WAAM 部件制造或再制造过程中改善机械性能和微观结构的潜力。
瑞创科技旗下瑞创微电子有限公司是全球对红外热传感技术理解最为全面的企业,拥有数十年热传感器及摄像头模组自主研发和制造经验,与全球客户及合作伙伴共同为世界提供更美好的未来和生活。
● CeraCharge 是支持现代 IC 技术(MPU、传感器)的理想存储介质。这些 IC 的能耗极低,且需要较长的使用寿命。
摘要:Lini 0.5 Mn 1.5 O 4(LNMO)阴极的长期电化学循环寿命(LES)(LES)和对细胞衰竭机制的知识不足是雄辩的致命弱点对实际应用的雄辩,尽管它们具有较大的承诺,可以降低lithium-ion Batteries的成本(Libs)。在此,提出了一种工程的工程策略-LE界面以增强LIBS的循环寿命。通过简单的slot-slot-die coating,通过离子 - 电子(Ambiall)混合陶瓷 - 聚合物 - 聚合物电解质(IECHP)将阴极活性颗粒与LE之间的直接接触通过将溶胶 - 凝胶合成截短的八面体形的LNMO颗粒封装。IECHP覆盖的LNMO阴极显示出250个循环的能力逐渐衰减,1000次充电循环后的容量降低了约90%,显着超过了未涂层的LNMO阴极的能力(在980个周期后的〜57%)中,在1 m lipf 6中,ec in in 1 m lipf 6 in 1 m lipf 6 in in 1 m lipf 6 in in 1 c in in 1 cy n in 1 m lipf 6 in in ec:Dmc:通过聚焦离子束扫描电子显微镜和飞行飞行时间二级离子质谱法检查了两种类型的阴极之间的稳定性差异。这些研究表明,原始的LNMO在阴极表面产生不活动层,从而减少了阴极和电解质之间的离子转运,并增加了界面电阻。IECHP涂层成功克服了这些局限性。因此,目前的工作强调了IECHP涂层的LNMO作为1 M LIPF 6电解质中的高压阴极材料的适应性,以延长使用。拟议的策略对于商业应用来说是简单且负担得起的。
产品特性 聚酰亚胺是一种强度和耐热性优异的超级工程塑料,其应用范围广泛,从电视、智能手机、汽车到航空航天。宇部兴产是全球唯一一家从原材料联苯四甲酸二酐 (BPDA) 到清漆、薄膜和粉末实现一体化生产的制造商。我们的原材料和专有的成型和加工技术使我们能够生产出具有竞争优势的产品。我们的聚酰亚胺在大型显示器的芯片薄膜 (COF) 应用中占有很高的市场份额,在柔性有机发光二极管基板的清漆中也占有很高的市场份额。我们还生产结合了聚酰亚胺中空纤维的气体分离膜(请参阅
- 硼可以显着增强高温稳定性。- 硼的存在延迟了结晶的发作,使材料能够在较高温度下保持其无定形结构,并维持CMC的结构完整性。- 通过形成保护性硼硅酸盐玻璃层,增强对氧化的抗性。- 硼隆的掺入会导致形成较强的键,即使在升高的温度下,也提供了高弯曲强度的SI(B)CN陶瓷。
这是记录由Ceratonia Siliqua水提取物制备的硒纳米颗粒(Nanose)抗菌活性的研究,鉴于纳米糖在药用应用中的效力很大。使用多种常规方法(包括粉末X射线衍射(PXRD),傅立叶变换红外光谱(FTIR),现场发射扫描电子显微镜(FESEM),能量分散性X射线光谱(Edax),DLS,dls和Z-Potienth和Z-Potection,采用了多种常规方法的表征。 PXRD分析证明了纳米与参考号00-001-0853的兼容性。 FTIR光谱还证实了提取物中残留的有机成分存在。 FESEM图像揭示了这些颗粒被包裹在C. silliqua的有机材料中。 颗粒显示出球形形态。 生物合成纳米的平均流体动力粒径约为199 nm(按强度分散尺寸)。 颗粒显示的平均表面电荷为-21.88 mV。 纳米糖在抑制生长致病细菌方面至关重要。 该项目的结果突出了生物合成纳米糖的有效抗菌特性,强调了金属纳米颗粒(例如硒)在未来的抗菌应用中的有用应用。采用了多种常规方法的表征。PXRD分析证明了纳米与参考号00-001-0853的兼容性。FTIR光谱还证实了提取物中残留的有机成分存在。FESEM图像揭示了这些颗粒被包裹在C. silliqua的有机材料中。颗粒显示出球形形态。生物合成纳米的平均流体动力粒径约为199 nm(按强度分散尺寸)。颗粒显示的平均表面电荷为-21.88 mV。纳米糖在抑制生长致病细菌方面至关重要。该项目的结果突出了生物合成纳米糖的有效抗菌特性,强调了金属纳米颗粒(例如硒)在未来的抗菌应用中的有用应用。
cer Eng 4410集成计算材料工程简介(LAB 1.0和LEC 2.0)本课程将为不同的长度尺度研究材料研究不同的计算工具介绍。将引入几种原子,微观和连续模型,并将讨论不同建模量表之间的桥接。本课程具有一个计算实验室来构建模型和运行模拟。先决条件:CER ENG 3230和MATH 3304中的“ C”等级或更高,以及Cer Eng 2110或Met Eng 2110。
结构应用需要具有独特性能组合的材料,包括高强度、刚度、耐环境性和断裂韧性。作为一类材料,陶瓷在所有这些性能方面通常都优于金属合金,但断裂韧性除外。陶瓷固有的断裂韧性不足阻碍了其在机身、涡轮盘、地面车辆底盘和潜艇船体等关键结构中的应用。这是不幸的,因为结构陶瓷的强度可能比金属高 10 倍,刚度高 2 倍,密度只有金属的一半,并且能够在高 2 倍的温度下和腐蚀性环境中工作。将金属般的断裂韧性设计到块状陶瓷中将引入一类新的耐损伤结构材料,其性能甚至可能超过最先进的金属合金。