物理特性 颜色 目测 象牙色 密度 g/cm3 ASTM C373-88, ASTM C20 3.91 晶粒尺寸 微米 ASTM E112-10 25 结晶相 % Alpha XRD 100 吸水率 % ASTM C373-88 0% 抗弯强度 PSI 3 点 PSI ASTM C1161, F417 39,870 弹性模量 GPA per ASTM C1198 ASTM C1198 347 泊松比 ASTM C848 0.22 抗压强度 (PSI) ASTM C773 323,000 硬度 (GPA) ASTM C1327 维氏 1342 断裂韧性 MPa√m 单边缺口 4.19 添加剂 (YtO3) Wt% ICPMS N/A 杂质 (SiO2 ) PPM GDMS <500 杂质 (Na2O) PPM GDMS <400 杂质 (CaO) PPM GDMS <400 杂质 (K2O) PPM GDMS <100 杂质 (Fe2O3) PPM GDMS <400 杂质 (TiO2) PPM GDMS <100 杂质 (C) PPM GDMS <50 杂质 (S) PPM GDMS <50
FR-AlN-ST 是一种先进的结构氮化铝陶瓷,采用高温液相烧结制成。它是一种完全致密的棕褐色结构陶瓷,能够使用近净形状和金刚石研磨工艺制成。由于钠和二氧化硅浓度较低,它非常适合要求高导热性的半导体、商业和航空航天应用。FR-AlN-ST 的热膨胀率与钨和钼的热膨胀率非常匹配,因此可以创建能够在各种工作温度下工作的密封组件。添加氧化钇以实现液相烧结,还可以提高传统 Mo/Mn 和 Mo/Mn/W 厚膜金属化系统的粘合强度。
烧结发生的温度大约高于化合物熔点的一半。由于陶瓷的熔点在所有工程材料中最高,因此烧结温度通常在 1000 至 2000 °C 之间。为了控制最终的微观结构和性能,关键的烧结参数包括加热速度、最高温度、保持时间和气氛。其他可能性包括使用机械压力、电场/电流或电磁波、烧结添加剂等。在工业间歇或连续炉中,缓慢的加热速度、较长的保持时间,以及随后的缓慢冷却速度是标准配置。由于当前的能源危机和全球气候变化,金属和陶瓷零件的烧结等能源密集型工艺不仅增加了生产成本,而且还对其碳足迹和生命周期评估产生负面影响。
摘要:关于添加石墨烯增强体来改善氧化铝 (Al 2 O 3 ) 陶瓷材料微加工性能的研究仍然太少且不完整,无法满足可持续制造的要求。因此,本研究旨在详细了解石墨烯增强体对提高 Al 2 O 3 基纳米复合材料激光微加工性能的影响。为此,使用高频感应加热工艺制备了高密度 Al 2 O 3 纳米复合材料样品,其中石墨烯纳米片 (GNP) 的含量为 0 wt.%、0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.%。对样品进行激光微加工。之后,研究了 GNP 含量对烧蚀深度/宽度、表面形貌、表面粗糙度和材料去除率的影响。结果表明,纳米复合材料的微加工性能受到 GNP 含量的显著影响。与基础 Al 2 O 3(0 wt.% GNP)相比,所有纳米复合材料的烧蚀深度和材料去除率均有所改善。例如,在更高的扫描速度下,与基础 Al 2 O 3 纳米复合材料相比,GNP 增强样品的烧蚀深度增加了 10 倍。此外,与基础 Al 2 O 3 样品相比,0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.% GNP/Al 2 O 3 纳米复合材料的 MRR 分别增加了 2134%、2391%、2915% 和 2427%。同样,与基础 Al 2 O 3 相比,所有 GNP/Al 2 O 3 纳米复合材料样品的表面粗糙度和表面形貌都有了显著改善。这是因为 GNP 增强体通过增加光吸收率和热导率并减小 Al 2 O 3 纳米复合材料的晶粒尺寸,降低了烧蚀阈值并提高了材料去除效率。在 GNP/Al 2 O 3 纳米复合材料中,0.5 wt.% 和 1 wt.% GNP 样品在大多数激光微加工条件下表现出优异的性能,缺陷最少。总体而言,结果表明,使用基本光纤激光系统(20 瓦)和非常低功耗,可以高质量、高生产率地加工 GNP 增强 Al 2 O 3 纳米复合材料。这项研究表明,在氧化铝陶瓷基材料中添加石墨烯以提高其可加工性具有巨大的潜力。
doi:https://dx.doi.org/10.30919/es8d582评论先进的Mullite Ceramics Romit Roy,Dipankar das *和Prasanta Kumar Rout * Abstract Mullite正在成为最宽敞的氧化陶瓷材料之一,因为其高级结构和功能性的陶瓷物质是其出色的陶瓷物质之一。这样的特性是低密度,低热膨胀,出色的蠕变耐药性,低导热性,高温下的优异强度以及良好的化学稳定性。如今,Mullite在结构,电子,光学和高温等各个领域中具有广泛的应用领域。 mullite存在于骨晶体结构中,具有3AL 2 O 3·2SIO 2的化学计量组成。 本研究概述了Mullite的结构,性质,合成路线,各种现代应用。 在简短的介绍之后,本评论论文重点介绍了mullite的基本晶体结构。 其次,本文处理了Mullite陶瓷的各种属性和应用领域,第三,作者列出了不同的陈述原材料和各种合成途径,以在桌面形式中制造Mullite陶瓷,并尝试编译其他研究人员的研究结果。 最后,这项研究的最后一部分是Mullite陶瓷,Mullite合成挑战和废料利用的各种应用。如今,Mullite在结构,电子,光学和高温等各个领域中具有广泛的应用领域。mullite存在于骨晶体结构中,具有3AL 2 O 3·2SIO 2的化学计量组成。本研究概述了Mullite的结构,性质,合成路线,各种现代应用。在简短的介绍之后,本评论论文重点介绍了mullite的基本晶体结构。其次,本文处理了Mullite陶瓷的各种属性和应用领域,第三,作者列出了不同的陈述原材料和各种合成途径,以在桌面形式中制造Mullite陶瓷,并尝试编译其他研究人员的研究结果。最后,这项研究的最后一部分是Mullite陶瓷,Mullite合成挑战和废料利用的各种应用。
L. An 博士、B. Liang、CN Li、YL Huang 博士、Y. Hu、Z. Li、JN Armstrong 教授、D. Faghihi 教授、SQ Ren 教授,纽约州立大学布法罗分校机械与航空航天工程系、能源环境与水研究所研究与教育,美国纽约州布法罗 14260。电子邮件:shenren@buffalo.edu JY Wang,SQ Ren 教授 纽约州立大学布法罗分校化学系,美国纽约州布法罗市 14260 Z. Guo,C. Zhou 教授 纽约州立大学布法罗分校工业与系统工程系,美国纽约州布法罗市 14260 SQ Ren 教授 纽约州立大学布法罗分校能源、环境与水 (RENEW) 研究所研究与教育,纽约州布法罗市 14260 关键词:可穿戴纺织品、芳纶纤维、恶劣环境、气凝胶复合材料、制造
随着全球技术的动态进步,对新工程材料的研究适用于具有令人兴奋的特性的各种材料。这些材料包括改进的金属合金,新型塑料,陶瓷和复合材料,例如[1,2]。In terms of modern applications, the most important factors in the field of ceramic materials are high values of dielectric, ferroelectric, piezoelectric, pyroelectric, and magnetic properties obtained in various types of materials, e.g., ferroelectrics, piezoelectrics, pyroelectrics, piezoelastics, multiferroics, ferroelectro-ferromagnetic复合材料,带有钙钛矿型结构的材料,掺杂的陶瓷材料,无铅材料,生物材料等。[3 - 6]。近年来,对具有多性特性的材料进行了实验和技术研究,以进行微电源和微技术应用[7-9]。这些研究既涉及具有在一种材料中获得功能特性的材料的设计[10-12](以及具有各种特性的材料以形成一种复合材料,例如,具有铁素体的铁电[13 - 18]),以及多组分材料的设计(例如,实心解决方案)[19-21]。这样的连接(与磁性和电源的耦合)允许获得新的材料特性,从而扩大了这些材料的应用可能性。具有高磁电效应和最佳特性的多效复合材料也是磁性电解或旋转技术中特定应用的潜在候选者[7,22 - 24]。For example, multiferroic properties can be used in interference sensors sensitive to field changes, during the precise control of electrical and magnetic fields, as well as temperature and pressure, and further in broadband detectors of the far infrared, as tunable multifunction transducers, pyroelectric sensors, oscillators, vibrators, electrostric- tive and magnetoelectric transducers,执行器,逻辑设备(用于存储信息)和微波设备[7-9,22]。适当的磁电耦合允许外部因素(磁场,电场,压力或温度)来控制磁性和电气性能,这使得可以在一种材料中获得新的内存类型[23 - 27]。因此,在一种材料中产生各种物理特性是获取现代和高性能工程材料以获得其多功能功能的一种有希望的方法。例如,获得具有高介电,压电和铁电特性的材料的组合以及具有高磁性的材料的组合,增加了磁电效应,这是许多应用的重要因素。基于具有多效性质的材料,各种换能器,传感器和内存元素发现了在微电子,宇宙学和高能量物理学中的更新和更多功能应用[9]。这导致需要持续改进这种材料的生产技术,以获得具有最佳且可重复的物理参数的产品。技术的改进伴随着同时搜索具有令人兴奋的特性的新型多用量材料。通过广泛的专业测试(包括热重时(DTA,TG,DTG),X射线(XRD)和微观结构分析(SEM,EDS,EDS,EDS,EDS,EPMA,>,EDS,EPMA,
当前和未来的太空和机载光学仪器面临着巨大的技术和经济挑战,趋向于高度集成。因此,组件和由此产生的子组件的复杂性使增材制造 (AM) 成为一种颠覆性生产的手段。此外,随着性能要求的提高,光学系统变得越来越大,这需要开发新的制造工艺以保证预期的性能。陶瓷材料的另一个非常苛刻和具有挑战性的关键领域是半导体行业。事实上,这些设备的整个制造工艺流程非常激进,需要具有特殊化学、热和电子性能的材料,而只有陶瓷才能满足这些要求。此外,对灵活和复杂形状的需求以及在最近的短缺之后不断增长的搬迁和加速生产的愿望使得 3D 打印成为一种相关的应对措施。因此,我们不难理解为什么航空航天和电子应用代表着未来 10 年 3D 打印陶瓷技术部件最重要的收入机会,预计到 2030 年底将达到约 7.64 亿美元。
用于医疗设备的高性能技术陶瓷 CoorsTek 是一家全球医疗设备技术陶瓷部件制造商。该公司成立于 1910 年,一直处于为众多行业开发技术陶瓷的前沿。如今,CoorsTek 凭借 400 多种独特的专有材料配方、无与伦比的研究和工程专业知识以及广泛的制造工艺引领先进材料行业。
1 纳米物体介质光物理实验室,瓦维洛夫国立光学研究所,Kadetskaya Liniya VO,dom 5,korp.2,199053 圣彼得堡,俄罗斯;atoikka@obraz.pro(AT);barnash.yaroslaw@yandex.ru(YB);kpv_2002@mail.ru(PK) 2 纳米结构材料与器件光物理实验室,瓦维洛夫国立光学研究所,Babushkina 街,dom 36,korp.1,192171 圣彼得堡,俄罗斯 3 圣彼得堡电工大学(“LETI”)光子学系,Ul. Prof. Popova,dom 5,197376 圣彼得堡,俄罗斯 4 先进开发部,圣彼得堡核物理研究所,国家研究中心“库尔恰托夫研究所”,1 md。 Orlova Roshcha,188300 Gatchina,俄罗斯 5 俄罗斯科学院伊曼纽尔生物化学物理研究所,4 Kosigina 街,119334 莫斯科,俄罗斯;dgkvashnin@phystech.edu 6 俄罗斯普列汉诺夫经济大学聚合物材料化学与技术学院,Stremyanny Lane,36,117997 莫斯科,俄罗斯 7 俄罗斯皮罗戈夫国立研究医科大学物理与数学系,Ostrovitianov 街 1,117997 莫斯科,俄罗斯 * 通讯地址:nvkamanina@mail.ru;电话:+7-(812)-327-00-95