摘要:纳米晶氧化铝-氧化锆基共晶陶瓷是用高能束制备的,由超细、三维缠结的单晶域组成,是一类特殊的共晶氧化物,具有极高的高温力学性能,如强度和韧性以及抗蠕变性。本文旨在全面综述氧化铝-氧化锆基共晶陶瓷的基本原理、先进的凝固工艺、微观结构和力学性能,特别关注纳米晶尺度上的技术现状。首先根据先前报道的模型介绍了耦合共晶生长的一些基本原理,然后简要介绍了凝固技术和从工艺变量控制凝固行为的策略。然后,从不同层次尺度阐明纳米共晶结构的微观结构形成,并详细讨论硬度、弯曲和拉伸强度、断裂韧性和耐磨性等机械性能,以进行比较研究。利用高能束工艺已经生产出具有独特微观结构和成分特征的纳米氧化铝-氧化锆基共晶陶瓷,在许多情况下,与传统共晶陶瓷相比,机械性能有显著改善。
doi:https://dx.doi.org/10.30919/es8d582评论先进的Mullite Ceramics Romit Roy,Dipankar das *和Prasanta Kumar Rout * Abstract Mullite正在成为最宽敞的氧化陶瓷材料之一,因为其高级结构和功能性的陶瓷物质是其出色的陶瓷物质之一。这样的特性是低密度,低热膨胀,出色的蠕变耐药性,低导热性,高温下的优异强度以及良好的化学稳定性。如今,Mullite在结构,电子,光学和高温等各个领域中具有广泛的应用领域。 mullite存在于骨晶体结构中,具有3AL 2 O 3·2SIO 2的化学计量组成。 本研究概述了Mullite的结构,性质,合成路线,各种现代应用。 在简短的介绍之后,本评论论文重点介绍了mullite的基本晶体结构。 其次,本文处理了Mullite陶瓷的各种属性和应用领域,第三,作者列出了不同的陈述原材料和各种合成途径,以在桌面形式中制造Mullite陶瓷,并尝试编译其他研究人员的研究结果。 最后,这项研究的最后一部分是Mullite陶瓷,Mullite合成挑战和废料利用的各种应用。如今,Mullite在结构,电子,光学和高温等各个领域中具有广泛的应用领域。mullite存在于骨晶体结构中,具有3AL 2 O 3·2SIO 2的化学计量组成。本研究概述了Mullite的结构,性质,合成路线,各种现代应用。在简短的介绍之后,本评论论文重点介绍了mullite的基本晶体结构。其次,本文处理了Mullite陶瓷的各种属性和应用领域,第三,作者列出了不同的陈述原材料和各种合成途径,以在桌面形式中制造Mullite陶瓷,并尝试编译其他研究人员的研究结果。最后,这项研究的最后一部分是Mullite陶瓷,Mullite合成挑战和废料利用的各种应用。
用于医疗设备的高性能技术陶瓷 CoorsTek 是一家全球医疗设备技术陶瓷部件制造商。该公司成立于 1910 年,一直处于为众多行业开发技术陶瓷的前沿。如今,CoorsTek 凭借 400 多种独特的专有材料配方、无与伦比的研究和工程专业知识以及广泛的制造工艺引领先进材料行业。
1 纳米物体介质光物理实验室,瓦维洛夫国立光学研究所,Kadetskaya Liniya VO,dom 5,korp.2,199053 圣彼得堡,俄罗斯;atoikka@obraz.pro(AT);barnash.yaroslaw@yandex.ru(YB);kpv_2002@mail.ru(PK) 2 纳米结构材料与器件光物理实验室,瓦维洛夫国立光学研究所,Babushkina 街,dom 36,korp.1,192171 圣彼得堡,俄罗斯 3 圣彼得堡电工大学(“LETI”)光子学系,Ul. Prof. Popova,dom 5,197376 圣彼得堡,俄罗斯 4 先进开发部,圣彼得堡核物理研究所,国家研究中心“库尔恰托夫研究所”,1 md。 Orlova Roshcha,188300 Gatchina,俄罗斯 5 俄罗斯科学院伊曼纽尔生物化学物理研究所,4 Kosigina 街,119334 莫斯科,俄罗斯;dgkvashnin@phystech.edu 6 俄罗斯普列汉诺夫经济大学聚合物材料化学与技术学院,Stremyanny Lane,36,117997 莫斯科,俄罗斯 7 俄罗斯皮罗戈夫国立研究医科大学物理与数学系,Ostrovitianov 街 1,117997 莫斯科,俄罗斯 * 通讯地址:nvkamanina@mail.ru;电话:+7-(812)-327-00-95
产品描述 A-15 钢质舱壁(两侧防火)- FireMaster Marine Plus 毯 25 毫米 x 64 千克/立方米,由结构钢舱壁组成,舱壁隔热层采用单层 25 毫米厚的 FireMaster Marine Plus 毯(由 Thermal Ceramics 制造,密度为 64 千克/立方米)覆盖,覆盖在加强筋上。加强筋也用相同的毯子包裹。使用焊接在舱壁上的镀铜低碳钢销(直径 3 毫米/通常长度在 40 到 50 毫米之间)和 38 毫米摩擦配合垫圈将毯子固定到位。安装销的最大间距为 350 毫米。在接头处,毯子应该被压缩。毯子之间的接头可以放置在距离锚销的最大 350 毫米处,跨越毯子的宽度,以及距离锚销的最大 250 毫米处,其中毯子的长度连接在一起。安装将根据制造商的防火系统信息(参考编号 FM MS 01 PW 和编号 FM 4.103)进行。产品可以在以下场所制造: - 摩根凯龙(荆门)热陶瓷有限公司,中国荆门。 - 摩根热陶瓷(上海)有限公司,中国上海。 - Thermal Ceramics de France SA,法国 Saint-Marcellin-en-Forez。 - Murugappa Morgan Thermal Ceramics Ltd.,印度甘地讷格尔区。 - Murugappa Morgan Thermal Ceramics Ltd,印度拉尼佩特。 - Morgan Thermal Ceramics Korea,韩国大邱。 - Grupo Industrial Morgan SA de CV,墨西哥帕丘卡德索托。 - Morgan Advanced Materials Industries Ltd,阿拉伯联合酋长国阿布扎比。 - Thermal Ceramics, Inc.,美国奥古斯塔。应用/限制 获准用作 A-15 级防火分区。一般应用:任一侧均有火灾危险 根据相关规则要求时,所使用的任何表面材料都必须通过防烟、防毒以及低火焰蔓延特性(IMO 2010 FTP 规则附件 1 第 2 和第 5 部分)的批准。 每件产品都应附带安装和维护手册。 型式认可文件 按照 DNV-CP-0338 船级社计划认证,2021 年 9 月。 测试报告编号 FT12073,日期为 2012 年 4 月 5 日,由中国上海远东防火测试中心出具。 热陶瓷防火系统信息,参考编号 FM MS 01 PW,Rev.9 和编号 FM 4.103 Rev.1。 进行的测试 根据 IMO FTP 规则第 3 部分(IMO Res. A.754(18))进行测试,并符合 IMO 2010 FTP 规则 Ch。 8. 产品标记 产品或包装上应标明制造商名称、型号和消防技术等级。 加拿大运输部批准 根据加拿大运输部出版物《救生设备、消防安全系统、设备和产品批准程序 (TP14612)》中规定的程序,DNV 确认本证书中列出的产品符合加拿大运输部的要求。定期评估 DNV 的检验员应被授权在本证书有效期内的任何时间以及至少每两年进行一次定期评估。该安排应符合船级社计划 DNV-CP-0338 第 4 节中所述的程序。
许多原始设备制造商已经从 CeramTec 的精密加工压电陶瓷部件中获益,这些部件用于高功率工业超声波应用,如清洁或焊接。我们不断与客户合作,为特定的工业需求开发定制解决方案。利用我们全面的设计专业知识和三个生产基地的特定制造能力,我们能够提供符合严格规格的优质压电陶瓷组件,无论数量多少。我们提供高产量、高度自动化的生产,集成 100% 在线检查,以及小批量复杂形状特殊组件的手工生产。
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/
摘要:本文使用代表性样品研究了位于西班牙安达卢西亚西部的原始高岭土矿床。表征方法包括 X 射线衍射 (XRD)、X 射线荧光 (XRF)、筛分和沉降粒度分析以及热分析。确定了陶瓷性能。在一些测定中,我们使用了来自 Burela(西班牙卢戈)的商用高岭土样品,用于陶瓷工业,以便进行比较。高岭土矿床是由富含长石的岩石蚀变形成的。这种原始高岭土被用作当地陶瓷和耐火材料制造的添加剂。然而,之前没有关于其特性和烧成性能的研究。因此,本研究的意义在于对这一主题进行科学研究并评估其应用可能性。用水冲洗原始高岭土,以增加所得材料的高岭石含量,从而对岩石进行富集。结果表明,XRD 测定原料中的高岭石含量为 20 wt%,其中粒径小于 63 µ m 的颗粒占 ~23 wt%。粒径小于 63 µ m 部分的高岭石含量为 50 wt %。因此,通过湿法分离可以提高该原料高岭土的高岭石含量。但该高岭土被视为废高岭土,XRD 鉴定为微斜长石、白云母和石英。通过热膨胀法 (TD)、差热分析 (DTA) 和热重法 (TG) 进行热分析,可以观察到高岭石的热分解、石英相变和烧结效应。将该原料高岭土的压制样品、水洗获得的粒径小于 63 µ m 的部分以及用锤磨机研磨的原料高岭土在 1000-1500 ◦ C 范围内的几个温度下烧制 2 小时。测定并比较了所有这些样品的陶瓷性能。结果表明,这些样品在烧结过程中呈现渐进的线性收缩,小于 63 µ m 的部分的最大值约为 9%。总体而言,烧成样品的吸水率从 1050 ◦ C 时的约 18-20% 下降到 1300 ◦ C 烧成后的几乎为零,随后实验值有所上升。在 1350 ◦ C 烧成 2 小时后,开孔气孔率几乎为零,并且在研磨的生高岭土样品中观察到的体积密度达到最大值 2.40 g/cm 3。对烧成样品的 XRD 检查表明,它们由高岭石热分解产生的莫来石和原始样品中的石英组成,除玻璃相外,它们还是主要晶相。在 1300–1350 ◦C 下烧结 2 小时,可获得完全致密或玻璃化的材料。在本研究的第二步中,研究了之前研究的有希望的应用,即通过向该高岭土样品中加入氧化铝(α-氧化铝)来增加莫来石的含量。混合物的烧结,在湿法加工条件下,用这种高岭土和 α-氧化铝制备的莫来石,通过在高于 1500 ◦ C 的温度下反应烧结 2 小时,使莫来石的相对比例增加。因此,可以使用这种高岭土制备莫来石耐火材料。这种高铝耐火材料的加工有利于预先进行尺寸分离,从而增加高岭石含量,或者更好地对原料高岭土进行研磨处理。
klaus schroder 6。磁性泡内存储技术,hsu chang 7。变压器和电感器设计手/书,Wm上校。T. McLyman 8。电磁学:经典和现代理论与应用,Samuel Seely和Alexander D. Poularikas 9。一维数字信号处理,Chi-Tsong Chen 10。互连动力系统,Raymond A. DeCarlo和Richard Saeks 11。现代数字控制系统,Raymond G. Jacquot 12。混合电路设计与制造,Roydn D. Jones 13。变压器和电感器的磁芯选择:练习和规范的用户指南,Wm上校。T. McLyman 14。静态和旋转的电磁设备,Richard H. Engelmann 15。节能电动机:选择和应用,John C. Andreas 16。电磁辅助性,亨氏M Schlicke 17。电子:模型,分析和系统,James G. Gottling
doi:https://doi.org/10.2298/SOS2001001F UDK: 546.271;622.785;676.056.73 超耐火过渡金属二硼化物陶瓷的致密化 WG Fahrenholtz 1*)、GE Hilmas 1、Ruixing Li 2 1 密苏里科技大学,密苏里州罗拉 2 北京航空航天大学,北京,中国 摘要:回顾了过渡金属二硼化物的致密化行为,重点介绍了 ZrB 2 和 HfB 2 。这些化合物被认为是超高温陶瓷,因为它们的熔点高于 3000°C。过渡金属二硼化物的共价键很强,导致熔点极高,自扩散系数低,因此很难对其进行致密化。此外,粉末颗粒表面的氧化物杂质会促进颗粒粗化,从而进一步抑制致密化。20 世纪 90 年代之前的研究主要采用热压进行致密化。这些报告揭示了致密化机制,并确定有效致密化需要氧杂质含量低于 0.5 wt%。后续研究采用了先进的烧结方法,如放电等离子烧结和反应热压,以生产出接近全密度和更高金属纯度的材料。还需要进一步研究以确定基本的致密化机制并进一步改善过渡金属二硼化物的高温性能。关键词:过渡金属二硼化物;致密化;烧结;热压。1. 简介过渡金属二硼化物 (TMB2) 作为用于极端环境的材料已被研究多年。 1-7 多种 TMB2 被视为超高温陶瓷 (UHTC),因为它们的熔点超过 3000°C,其中包括 TiB 2 、ZrB 2 、HfB 2 和 TaB 2。其他 TMB2,例如 OsB 2 和 ReB 2,作为新型超硬材料备受关注。8-10 TMB2 拥有不同寻常的性能组合,例如金属般的热导率和电导率以及陶瓷般的硬度和弹性模量,这是由共价键、金属键和离子键特性的复杂组合产生的。11-13 由于其性能,TMB2 被提议用于极端温度、热通量、辐射水平、应变速率或化学反应性,这些都超出了现有材料的能力。通常提到的 TMB2 的一些潜在应用包括高超音速航空航天飞行器、火箭发动机、超燃冲压发动机、轻型装甲、高速切削工具、熔融金属接触应用的耐火材料、核聚变反应堆的等离子体材料以及先进核裂变反应堆的燃料形式。5,14-22 TMB2 具有极高的熔化温度和硬度值,而同样的特性也使 TMB2 难以致密化。陶瓷材料的致密化可以通过多种方法实现。许多商用陶瓷都是通过无压烧结粉末加工方法制造的部件生产的。23-25有些陶瓷很难通过无压烧结致密化。