摘要 简介。儿童中风 (PS) 是一种罕见疾病,全球发病率为 1.2 – 13/100,000,但尽管如此,它仍然是儿童残疾的重要原因。它之所以成为一个具有挑战性的研究课题,是因为其患病率高达 35%,令人震惊。在这方面,最常见的运动障碍是 50% 至 80% 的 PS 儿童出现偏瘫。文献综述。本研究使用了以下数据库:PubMed、Medline、Scopus、Google Scholar。无症状的临床表现和极少使用的超急性再通疗法使康复成为 PS 儿童的主要治疗方法。目前的研究表明,儿童大脑神经可塑性更强的能力可能与康复有关,但也表明发育中的大脑受到损伤会产生一些特定的后果。机器人神经康复 (RNR) 可激活大脑神经可塑性,即刺激新的运动学习,这有助于脑损伤后的运动功能恢复。 RNR 与虚拟现实相结合,能够扩大传统康复的效果,孩子们觉得它很有趣,并激励他们积极参与耗时、特定、高强度的锻炼。通过学习和重复任务,运动恢复得到强化,机器人在执行动作时提供额外的力量,并持续测量客观参数。结论。对患有 PS 的儿童使用 RNR 的建议基于专家共识和薄弱的证据,因为缺乏随机对照研究。关键词:脑血管损伤、儿童、神经可塑性、机器人神经康复通讯作者:Hristina Čolović 电子邮件:hristina.colovic@medfak.ni.ac.rs
摘要简介。小儿中风(PS)是一种罕见的疾病,全球发病率为1.2 - 13/100,000,但仍然是儿童残疾的重要原因。使它成为一个具有挑战性的研究主题的是,其患病率在35%的盛行中令人震惊。这方面最普遍的运动不足是50%至80%的PS儿童的偏瘫。文献综述。用于本研究的目的:PubMed,Medline,Scopus,Google Scholar。无症状的临床图片和非常罕见的超急性再持续治疗的使用使康复成为受PS影响儿童的主要治疗方法。目前的研究表明,儿童大脑神经可塑性的更大能力与恢复有关,但也表明对发育中的大脑造成的损伤产生了一些特定的后果。机器人神经康复(RNR)激活脑神经可塑性,即刺激新的运动学习,这有助于在脑损伤后恢复运动功能。rnr与虚拟现实结合使用,能够扩大常规康复的影响,孩子们发现它很有趣,并且激励他们积极参与时间耗时,特定的,高强度的练习。通过学习和重复任务可以加强运动的恢复,并通过不断测量客观参数,在运动的性能中提供了额外的力量。结论。由于缺乏随机,对照研究,因此在受PS影响的儿童中使用RNR的建议是基于专家共识和弱证据。关键字:脑血管侮辱,儿童,神经塑性,机器人神经康复对应作者:hristinačolović电子邮件:hristina.colovic@medfak.ni.ac.ac.rs
脑血管疾病(CVD)是脑血管中一系列病变的一般术语,包括动脉,毛细血管,静脉和静脉鼻窦,最突出的危害是中风,是死亡和全球死亡和无能为力的主要原因之一[1]。根据2016年全球疾病研究的负担,中风的全球寿命风险约为25%[2]。至关重要的是阐明CVD的预防和治疗的发病机理,尤其是潜在的分子机制。一定数量的研究试图从不同的角度详细说明固有机制。但是,这些研究似乎集中在特定细胞类型内的分子变化上,而不是细胞之间的信息传递。患病的细胞可能会进一步影响相邻的细胞,并引发导致整个疾病的链反应,这意味着细胞间通信在此过程中起着至关重要的作用。
近几十年来,心血管和脑血管疾病的治疗已取得了重大进展,从而可以更有效地预防心血管和脑血管事件。然而,心脏和脑动脉粥样硬化并发症仍然占全世界的大量发病率和死亡率。新颖的治疗策略对于改善心血管疾病后的患者预后至关重要。miRNA是调节基因表达的小非编码RNA。在这里,我们讨论了miR-182在调节心肌增殖,迁移,缺氧,缺血,凋亡和肥大中的作用,在动脉粥样硬化,CAD,MI,I/R损伤,器官移植,心脏肥大,高血压,心脏衰竭,心脏失败,心脏病,心脏病,心脏病,心脏病,心脏病,心脏病和心脏毒性。此外,我们还总结了MiR-182治疗剂在临床开发中的当前进展,并讨论了为心脏病患者进入诊所所需的挑战。
脑血管疾病是全球死亡的主要原因之一,但是,迄今为止,预防或治疗这些疾病几乎没有取得进展。转化的生长因子-β(TGF-β)信号通路在脑血管发育和稳态中起着至关重要且高度复杂的作用,并且TGF-β信号失调会导致脑血管疾病。在这篇综述中,我们提供了概述TGF-β信号在生理和病理条件下脑血管系统中的功能作用。我们讨论了脑血管生成中TGF-β信号传导的当前理解和脑血管稳态的维持。我们还回顾了TGF-β信号传导触发或促进脑血管疾病进展的机制。最后,我们训练会讨论靶向TGF-β信号传导以治疗脑血管疾病的潜力。
1 神经外科系,神经科学、心理学、药理学和儿童健康系(NEUROFARBA)Careggi 大学医院,50139 佛罗伦萨,意大利;muscasgi@aou-careggi.toscana.it(GM);alessandro.dellapuppa@unifi.it(ADP)2 神经外科系,苏黎世大学医院,苏黎世大学,8091 苏黎世,瑞士;bas.vanniftrik@usz.ch(CHBvN);martina.seboek@usz.ch(MS);luca.regli@usz.ch(LR)3 临床神经科学中心,苏黎世大学医院,8091 苏黎世,瑞士;katharina.seystahl@usz.ch(KS);michael.weller@usz.ch(MW); marco.piccirelli@usz.ch (MP) 4 苏黎世大学医院神经内科,苏黎世大学,8091 苏黎世,瑞士 5 苏黎世大学医院放射肿瘤科,苏黎世大学,8091 苏黎世,瑞士;nicolaus.andratschke@usz.ch (NA);michelleleanne.brown@usz.ch (MB) 6 苏黎世大学医院神经放射科,苏黎世大学,8091 苏黎世,瑞士 * 通讯地址:jorn.fierstra@usz.ch;电话:+41-44-255-3169;传真:+41-44-255-2663
所有作者的附属信息:Marios K. Georgakis,医学博士,哲学博士,德国慕尼黑路德维希马克西米利安大学医院中风和痴呆症研究所,德国慕尼黑路德维希马克西米利安大学系统神经科学研究生院;Eric L. Harshfield,哲学博士,英国剑桥大学临床神经科学系中风研究组;Rainer Malik,哲学博士,德国慕尼黑路德维希马克西米利安大学医院中风和痴呆症研究所;Nora Franceschini,医学博士,公共卫生硕士,美国北卡罗来纳州教堂山北卡罗来纳大学吉林斯全球公共卫生学院流行病学系;Claudia Langenberg,医学博士,哲学博士 5,英国剑桥大学 MRC 流行病学部;Nicholas J. Wareham,医学博士,哲学博士,英国剑桥大学 MRC 流行病学部; Hugh S. Markus,医学博士、F 医学科学博士、英国剑桥大学临床神经科学系中风研究组;Martin Dichgans,医学博士,德国慕尼黑路德维希马克西米利安大学医院中风与痴呆症研究所;德国慕尼黑系统神经病学集群 (SyNergy);德国慕尼黑神经退行性疾病中心 (DZNE)
1神经科学计划,渥太华医院研究所,加拿大安大略省奥塔瓦2免疫学,渥太华大学,渥太华大学,安大略省,加拿大安大略省6个数字技术,加拿大国家研究委员会,渥太华,安大略省,加拿大安大略省7号医学科学司7,不列颠哥伦比亚省维多利亚大学,加拿大维多利亚大学8神经科学系8,神经科学系,加拿大卡尔顿大学,加拿大9诺,萨尔群岛,萨尔群岛。巴西圣保罗10耶鲁大学医学院,部门病理学,美国纽约州纽黑文病理学,美国纽约州纽黑文
脑血管控制及其与其他生理系统的整合在有效维持脑功能稳态方面发挥着关键作用。维持、恢复和促进这种平衡是脑康复和干预计划的首要目标之一。脑血管反应性 (CVR) 是脑血管储备的指标,在脑血流的化学调节中起着重要作用。改善血管反应性和脑血流是脑康复的重要因素,有助于实现预期的认知和功能结果。人们普遍认为,CVR 在衰老、高血压和脑血管疾病以及神经退行性综合征中受损。然而,许多生理因素都会影响 CVR,因此需要全面了解其潜在机制。我们目前对哪种康复方法可以改善 CVR 以及这些信息如何为患者的预后和诊断提供信息知之甚少。实施有针对性的康复方案将是阐明此类方案是否可以调节 CVR 的第一步,在此过程中可能有助于提高我们对潜在血管病理生理学的理解。因此,MRI 提供的高空间分辨率以及全脑覆盖为 CVR MRI 令人兴奋的最新发展打开了大门。然而,目前存在一些挑战,阻碍了其作为治疗计划和指导中有效诊断和预后工具的潜力。了解这些知识空白最终将有助于更深入地了解脑血管生理学及其在脑功能和康复中的作用。根据我们小组过去和正在进行的神经康复研究的经验教训,我们系统地回顾了导致衰老和疾病中 CVR 受损的生理机制,以及 CVR 成像及其在脑康复背景下的进一步发展如何为临床环境增加价值。
脑血管疾病,包括缺血性中风,出血性中风和血管畸形,是全球发病率和死亡率的主要原因。神经影像技术的进步彻底改变了脑血管疾病诊断和评估领域。这项全面的综述旨在对诊断和评估脑血管疾病的新型成像方法进行详细分析。我们讨论了各种成像方式的应用,例如计算机断层扫描(CT),磁共振成像(MRI),正电子发射断层扫描(PET)和血管造影,突出了它们的优势和局限性。此外,我们深入研究了新兴的成像技术,包括灌注成像,扩散张量成像(DTI)和分子成像,探索了它们对现场的潜在贡献。了解这些新型成像方法对于准确诊断,有效的治疗计划和监测脑血管疾病的进展是必要的。