纯化的组件8或旨在为TXTL机械提供必要组件的细胞裂解物。9 CFP具有比基于细胞的系统的许多优势,包括合成有毒产品的能力,10消除合成和内源性电路之间的合并,1和膜传输限制的涉及。6此外,CFP可以更精确地控制反应条件,这将其应用于原型遗传部位,6,7生物传感器的发展,10,11生物制造,5个教育意义,12,甚至建造人造细胞。13为了促进和合理化原型制作过程,CFP经常不构图一个建模步骤,该步骤可以预测不同实验场景的结果,并允许人们更深入地了解基本机制。4
CH1为什么要微电子? CH2半导体的基本物理学CH3二极管电路双极晶体管的CH4物理学CH5双极放大器MOS晶体管的CH6物理学CH7CMOS放大器的CH6物理学CH8CH8操作性放大器作为黑匣子CH16数字CMOS Circuits cmos CircuittCH1为什么要微电子?CH2半导体的基本物理学CH3二极管电路双极晶体管的CH4物理学CH5双极放大器MOS晶体管的CH6物理学CH7CMOS放大器的CH6物理学CH8CH8操作性放大器作为黑匣子CH16数字CMOS Circuits cmos Circuitt
GHG排放,范围1 + 2,按1型[MT CO 2 EQ] CO2 CO2 126,923 106,932 CH4 98 88 N2O 214 141范围1和2,按地区[MT CO 2 EQ]美国和加拿大105,364 89,305欧洲,以及World 25,603 21,603 21,125 21,1125 scece + World Worlds Scepe 110,430 % Reduction Scope 1 and 2 (from 2016) 4500 59 Scope 1 +2 normalized to revenue 18.0 16.0 Scope 1, facilities, and fleet by type 2 [MT CO 2 eq] CO2 82,146 68,104 CH4 47 42 N2O 143 79 Total Worldwide Scope 1 GHG emissions 86,078 71,495 Scope 1 normalized to revenue [MT CO2EQ/ $ M] 12.0 10.4范围1,设施和舰队2 [MT CO 2 EQ] 2 44,900 38,935 Scope 2 normalized to revenue [MT CO2eq/ $M] 6.2 5.7 Scope 2, by region U.S. and Canada 24,879 21,571 Europe and rest of world 20,021 17,364 Scope 3, by category [MT CO 2 eq] Global unless otherwise indicated Purchased good and services 928,120 869,347 Capital goods 8,668 6,455
图 1. 2020 年纽约州裸眼井和封堵井数量 ...................................................................... 3 图 2. 纽约州每年完工的石油和天然气井数量 .............................................................. 4 图 3. 2020 年产气井的年龄分布 ...................................................................................... 5 图 4. 纽约州的石油和天然气产量 ...................................................................................... 6 图 5. 2020 年累计石油和天然气总产量百分比与纽约州油井数量之间的关系 ............................................................................. 7 图 6. 2020 年纽约州石油和天然气井位置和产量 ............................................................................. 8 图 7. 纽约州及周边各州石油和天然气井、天然气加工厂、天然气管道、天然气地下储存和页岩气田的位置 ................................................................................................................ 9 图 8. 纽约州天然气公用事业服务区 ............................................................................................. 10 图 9. 石油和天然气系统图 10. 确定天然气系统逸散性 CH 4 排放估算方法的决策树 ......................................................................................................................27 图 11. 确定石油系统逸散性 CH 4 排放估算方法的决策树 ......................................................................................................................28 图 12. 1990 年至 2020 年纽约州的 CH 4 总排放量(AR5 GWP 20) .............................................................................................................图 16. 2020 年纽约州下游、中游和上游 CH4 排放量占总排放量的百分比 ...................................................................................................................... 102 图 17. 2020 年纽约州按来源类别并按上游、中游和下游阶段分组的 CH4 排放量 (AR5 GWP 20) ............................................................................................. 103 图 18. 前五大排放源类别中 CH4 排放量的百分比 ............................................................................................. 104 图 19. 2020 年纽约州各县 CH4 排放量地图 (AR5 GWP 20) ............................................................................................. 113 图 20. 2020 年纽约州各县 CH4 排放量 (AR5 GWP 20) ............................................................................................. 114帝国大厦发展公司确定的纽约州经济区域.... 121 图 22. 2020 年纽约州各经济区域的 CH 4 排放量(AR5 GWP 20)...... 122 图 23.使用 AR5 GWP 20 甲烷换算因子,比较 1990 年和 2020 年纽约州源类别甲烷排放量 ...................................................................................................... 124 图 24. (EPA 2022) 中的图 ES-11 的复制,显示能源和其他部门排放的时间序列趋势 ................................................................................................................ 125 图 25. 包括最佳估计值和上限和下限的总排放量 (AR5 GWP 20 ) ............................................................................................................................. 131 图 26. 包括上限和下限的上游排放量 (AR5 GWP 20 ) ............................................................................................................................. 131 图 27. 包括上限和下限的中游排放量 (AR5 GWP 20 ) ............................................................................................................. 131 图 28. 包括上限和下限的下游排放量 (AR5 GWP 20 ) ............................................................................................................. 132
数据:C3S/obs4mips(v4.5)合并(2003-2022),CAMS初步近实时数据(2023)GOSAT(CH4)和GOSAT-2(CO2)记录。空间范围:土地上的60ºS–60ºN。信用:C3S/CAMS/ECMWF/BREMEN/SRON大学
温室气体气体在热红外范围内吸收并发射辐射能量。在温室气体清单中测得的主要GHG是二氧化碳(CO2),甲烷(CH4),一氧化二氮(N2O),氟甲苯(PFCS),水力发电(HFCS),雕塑六氟化物(HFCS),Hydro-Fluorocarbons(HFCS)和NITROGON(NFUON)和NITRROGON(NITROGON)。
电子邮件korespondensi:zhafranzharifamrin@gmail.com摘要:为了提高沼气消化器的性能,可以采用几种方法,其中一种是添加循环系统[1]。消化器中的循环有助于均匀分布底物和微生物[2],从而加速生物反应并释放气体,从而提高了沼气的生产力[3]。这项研究的目的是在发酵液体豆腐废料和牛粪发酵过程中设计和分析循环系统对沼气消化器的影响。该研究分为两个阶段:首先,设计消化器,其次,第二个步骤操作消化器。第一步涉及批处理发酵14天,以调节降解的微生物。第二步涉及连续发酵16天,以循环系统的循环系统运行,以不同的速度为0、30、60和90。所研究的变量包括消化酯压力,CH4浓度和COD降低。结果表明,循环提高了沼气生产率,使用90循环实现了最佳变化,导致压力为0.19 kg/cm²,58%CH4和33.33%的COD降低。关键字:沼气,消化器,循环,系统。Abstrak:untuk Meningkatkan Kinerja suatu reaktor沼气Dapat dilakukan beberapa beberapa cara,salah satunya satunya adalah denalah dengan dengan menambahkan sistem sistem sistem sirkulasi [1]。sirkulasi pada digester membantu mendistribusikan基质丹·米克罗(Dan Mikroenist)secara merata [2],Sehingga Mempercepat Reaksi Biologis Biologis dan Melepaskan Gas,Sehingga Meningga Meningga Meningkatkan Produktivitas Miogas [3]。Kata Kunci:沼气,Reaktor,System,Sirkulasi。本研究的目的是设计和分析豆腐液体废物和牛粪发酵期间循环系统对沼气反应堆的影响。研究分为两个阶段:第一,消化器设计,其次是在两个阶段进行消化器的操作。第一步涉及批处理发酵14天,以调节降解微生物。第二阶段是连续发酵16天,其循环系统的变化速率为0、30、60和90。所研究的变量包括反应器压力,CH4浓度和COD降低。结果表明,循环提高了沼气的生产率,通过90个循环实现了最佳变化,产生的压力为0.19 kg/cm²,降低了CH4 58%,COD 33.33%。
