从根本上有用的玻璃是其光学的透明。当然有更强的建筑材料和其他同样惰性的容器材料,但是我们可以通过玻璃看到的事实使其非常特别。我们每天在窗户,瓶子和电子设备的屏幕上遇到的玻璃通常是硅酸盐玻璃的类型不同。硅酸盐玻璃可以传递超过90%的人类可以看到的光,即在400–800 nm的波长范围内。但是,可见光只是电磁频谱的一小部分。如果我们想以4,000–8,000 nm的波长查看光线,则以400-800 nm的波长传输光线的光线相同。因此,这些应用需要其他类型的玻璃。在电磁频谱的红外区域传输光线的设备在现代世界中,从非接触式温度计到用于修复我们视力的激光器。这些应用程序,更详细地讨论
多维工程葡萄干剂玻璃被广泛探索以构建各种红外光子设备,其表面是波前控制的关键维度。在这里,我们演示了在葡萄干剂玻璃表面上直接构图高光谱raTio mi-crostructures,这提供了一种有效且坚固的方法来操纵长波辐射。使用优化的深层蚀刻过程,我们成功地以8μm的高度构建了高镜的小圆柱,但我们成功地制造了高态度的微柱,我们证明了2毫米直径的全chalcogenide金属元素,具有0.45的数字光圈,在1.5mmmmm-mm-mm-thick的表面上为0.45,均为1.5mmmmmmmm-thick。利用出色的长波红外(LWIR)透明度和中等折射率为2 SE 3玻璃,全chalcogenide Metalens的焦点斑点大小约为1.39λ0,焦点效率为47%,在9.78μm的波长下为9.78μm,同时也表现出高分辨率的效果。我们的工作提供了一条有前途的途径,可以实现易于制作的,可实现的平面红外光学元件,用于紧凑,轻巧的LWIR成像系统。
由于其出色的可见光吸收和高化学稳定性,甲状腺素钙钛矿硫化物硫化锆(BAZRS 3)在过去几年中引起了极大的关注,这是杂交卤化物钙钛矿的潜在替代方法。但是,BAZR的高处理温度在1000以上的3层薄膜严重限制了其用于设备应用的潜力。在此,我们通过更改化学反应途径在低至500℃的温度下报告了BAZRS 3薄膜的合成。通过X射线衍射和拉曼光谱镜证实了单相3薄膜。原子力显微镜和扫描电子显微镜表明,随着退火温度的降低,结晶尺寸和表面粗糙度始终降低。较低的温度进一步消除了与高温加工有关的硫空位和碳污染。能够在较低温度下合成甲状腺素蛋白酶钙钛矿薄膜消除其设备制造的主要障碍。光电检测器显示快速响应,ON/OFF比率为80。制造的田间效应晶体管的电子和孔迁移率分别为16.8 cm 2 /vs和2.6 cm 2 /vs。
摘要:透明导电材料 (TCM) 已广泛应用于触摸屏、平板显示器和薄膜太阳能电池等光电应用。TCM 的这些应用目前以 n 型掺杂氧化物为主。由于空穴迁移率低或 p 型掺杂瓶颈,高性能 p 型 TCM 仍然缺乏,这阻碍了高效的器件设计和透明电子等新应用。在这里,基于第一性原理计算,我们提出硫族化物钙钛矿 YScS 3 作为一种有前途的 p 型 TCM。根据我们的计算,它的光吸收起始点高于 3 eV,这使得它对可见光透明。它的空穴电导率有效质量为 0.48 m 0 ,是 p 型 TCM 中最小的之一,表明空穴迁移率增强。它可以通过阳离子位点上的 II 族元素掺杂为 p 型,所有这些都会产生浅受体。结合这些特性,YScS 3 有望提高 p 型 TCM 相对于 n 型 TCM 的性能。
近年来簇化合物化学中所取得的主要进步主要与众多核性的许多低价羰基簇的结构有关,尤其是VIIII组金属的特征。1-lf金属羰基簇的形成少于过渡系列开始时元素的特征。簇化合物具有“经典”的酸性 - 卤素和葡萄糖剂等“经典”的酸 - 长期以来一直以这些金属的闻名,并且已经对其进行了彻底的研究。5“ 8与低价金属羰基簇相反,在带有“经典”配体的簇化合物中,金属原子具有较高的形式氧化态,因此这些化合物被分类为高价值簇。“*虽然过渡金属卤化物簇的第一代表早在本世纪初就获得了9个关于niobium,tantalum,tantalum,moleybdenum,tungsten和Rhenium Halide以及与各种配体的剧烈研究的剧烈研究。在过去的二十年中。5»6'8簇化合物的首次结构研究是根据六核钼簇进行的。1 0与卤化物配体的过渡系列开始时,金属的络合物的结构,群集组中的金属原子数量从2到6不等。
*对以下的通信:然而,由于这些区域中的非胎脂衰减率呈指数增长,这种现象称为能量差距定律,因此很少出现明亮的低能量排放。最近的文献强调了最大程度地减少骨骼模式以防止非递增的衰减率的重要性,但是这些地区的大多数有机发光都利用大型的,共轭的支架,其中包含许多C = C模式。在这里,我们报告了一个紧凑的,电信的脚手架,四硫酸盐-2,3,6,7-四苯甲酸酯或TTFTS,它显示出显着的空气,水和酸稳定性,表现出记录的量子产率和亮度值,并在环境条件下保持量子相干性。这些特性是通过有条理的硒取代来启用的,硒的替代可以转移发射,同时将骨骼振动转移到降低能量。这个新的脚手架验证了重型杂种替代策略,并建立了新的一类明亮的电信发射器和强大的量子。在NIR区域发射的分子在包括生物医学成像在内的几种应用中有望,因为它们掉入了组织透明区域,在该区域中,散射和自荧光最小化。1-12此外,发射到NIR深处的分子也落入电信带中,在光纤中衰减最小化,因此它们非常适合通信和量子信息科学应用。113–15在这些波长下运行的有机基因仪需要大型的共轭支架,以将吸收和发射转移到这些低能区域。1,10,16–20这些复杂的支架引入了多种振动模式,经常具有实质性νC– H和νC= C特征,从理论上讲,这些模式会导致非辐射衰减速率的指数增加,因为它们的能量差距会降低,这是一种已知的能量GAP法律的经验性观测。21–28因此,典型的分子染料具有极低的光致发光量子产率(PLQ),因为它们的过渡能降低。
这几乎是之前所有技术都无法比拟的。高吸收系数允许用 300-500 纳米厚的薄膜制成高效的太阳能电池,而高电子和空穴迁移率以及缺乏深缺陷允许较长的电荷载流子扩散长度并导致光激发电子的有效收集。[1,2] 这些特性支撑了某些卤化物钙钛矿在光伏电池中的快速发展和高效率。虽然单结太阳能电池的效率已经非常惊人,[3] 但光伏钙钛矿在短期内的“杀手级”应用被认为是用宽带隙钙钛矿顶部电池增强商用晶体硅太阳能电池,以创建串联器件。硅钙钛矿串联器件的效率已经达到 29%,已经超过了硅技术本身的记录,清楚地展示了这一概念的前景。 [4] 此类串联器件可以实现高产量生产,一些研究预测其每瓦成本将低于现有技术。[5] 毫不奇怪,这项技术的商业化尝试已经在进行中。[6]
主组硫化岩广泛用于相变数据存储[1-3]和静电能量转换。[4 - 6]相变材料(PCM)可以可逆地在无定形状态和晶状状态之间切换,这些状态与二进制数字“ 0”和“ 1”相等。[1,7]上级PCM需要分别具有高速相变(包括高速相变的属性)以及两个状态之间的大型光学和电阻对比,分别是可重写的光学和非挥发性电子数据存储。[1,8],疗程材料需要大的电导率(σ),如金属中,具有高的seebeck系数(s)(如半轴),以及低导热率(κ)和低的导热率(κ ZT = S2σT /κ的序列。[9-11]有趣的是,这些苛刻且看似矛盾的要求是在一类葡萄菌化合物(例如Gete和SB 2 TE 3)及其合金中发现的。[3,12,13]这种令人惊讶的属性组合促使我们研究了负责属性独特投资组合的潜在机制。材料的特性通常受两种类型的因素约束。其中之一与由组成元素(即通过化学键合机制)连接的固有特性有关。[14]另一个因素与由空缺等结构缺陷控制的外在特性有关,[15,16]位错,[17 - 19]晶界(GBS),[20-23]
对现有科学文献的比较分析表明,基于陶瓷(Al 2 O 3 、TiO 2 、SiO 2 )及其主轴连接制成的传感器既有优点,也有缺点。采用特殊工艺方法制造的SiO2多孔材料成本高,对SO 2 、CO 2 、CO、NH 3 、CH 4 等有毒气体的灵敏度低,等效逆反应时间<10秒[1]。研究表明,由薄非晶态片状硫属玻璃(As 2 (Se 0.9 Te 0.1 ) 3 、As 2 Se 3 )制成的传感器的灵敏度取决于它们的成分,其惰性极低。主要原因是作为电子过程的体电导率变化发生得相当快[2]。另一方面,硫属化物玻璃传感器(As 4 S 3 和 As-Ge-Te)体积小、成本低、能耗低,灵敏度高 [3]。基于硫属化物 As 4 S 3 和 As-Ge-Te 玻璃薄层的电阻式传感器对丙胺 (C 3 H 7 NH 2 ) 和二氧化氮 (NO 2 ) 介质高度敏感,可成功用于监测这些介质,因为它们具有对湿度的动态响应、高恢复性和可逆性的特点 [3]。硫化物硫系玻璃(例如As-S)的波长主要在0.6~7微米范围内,而含锗(Ge)、硒(Se)、硫(S)和碲(Te)的硫系玻璃(Ge-S、Ge-Se、Ge-As-S、Ge-As-Se、Ge-As-Se)的波长更宽,光学透明度高(2~12微米),可以在相对较宽的温度范围内(200~300℃)作为更有效的光纤材料应用[4.5]。