摘要:数百年来,查尔酮一直被世界各地的各种文化和传统用作食品和药物。本文简要概述了它们作为植物中特殊代谢物的生物合成,以及它们作为未来药物的意义、潜力、功效和可能性。随后,对天然存在的查尔酮及其在人体中的相应作用机制进行了更深入的探讨。根据其作用机制,查尔酮表现出许多药理特性,包括抗氧化、抗炎、抗癌、抗疟、抗病毒和抗菌特性。新型天然存在的查尔酮也被认为是潜在的抗糖尿病药物,并研究了它们对 GLUT-4 转运蛋白的影响。此外,还研究了它们的抗炎作用,重点研究了用于未来药物用途的查尔酮。查尔酮还能与特定受体和毒素结合,从而预防细菌和病毒感染。查尔酮对不同系统的生物降解表现出生理保护作用,包括脱髓鞘神经退行性疾病和预防高血压或高脂血症。正在/曾经进行临床试验的查尔酮被列为单独的部分。通过揭示查尔酮的多种生物学作用及其对医学的影响,本文强调了天然存在的查尔酮及其对患者护理的延伸意义,为观众提供了与主题相关的信息索引。
对产生相应的(z)-n' - (((1H-indol-3- yl)甲基甲基甲基甲基甲基)的相应的(z)-n' - (CH)的反应。 CH和CHN抑制剂的抑制效率分别分别减轻体重减轻,而CH和CHN抑制剂的抑制效率分别为约86.9%,CH和CHN抑制剂的抑制效率分别为降低的抑制剂,而CHN抑制剂的极化耐极能力高于CHN抑制剂的较高限制,而CHN抑制剂的浓度降低了,则在较大的情况下降低了COROSIT的差异。对于CH和CHN抑制剂,K ADS分别为11.4824 m -1和6.8667 m -1。吸附的自由能(∆ g o ads。)为-12.1685 kJ mol -1,CHN抑制剂为-14.7326 kJ mol -1。这表明CH和CHN抑制剂都被物理吸附到低碳钢表面上,而CHN则优先吸附。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。
目前的药物治疗由于毒性、低疗效和耐药性而失败;利什曼病是全球面临的重大健康挑战,迫切需要新的经过验证的药物靶点。受天然查尔酮 2',6'-二羟基-4'-甲氧基查尔酮 (DMC) 活性的启发,硝基类似物 3-硝基-2',4',6'-三甲氧基查尔酮 (NAT22, 1c) 被确定为强效的广谱抗利什曼原虫药物先导。结构修饰提供了一种含炔烃的化学探针,该探针标记了寄生虫内的一种蛋白质,该蛋白质被证实为胞浆锥虫过氧化物酶 (cTXNPx)。至关重要的是,在前鞭毛体和巨噬细胞内无鞭毛体生命形式中都观察到了标记,没有证据表明宿主巨噬细胞具有毒性。查尔酮在寄生虫中孵育会导致 ROS 积累和寄生虫死亡。通过 CRISPR-Cas9 删除 cTXNPx 会显著影响寄生虫表型,并降低查尔酮类似物的抗利什曼原虫活性。与计算机模拟 cTXNPx 同源性模型的分子对接研究表明,查尔酮能够结合假定的活性位点,阻碍其接近关键的半胱氨酸残基。总之,这项研究将 cTXNPx 确定为抗利什曼原虫查尔酮的重要靶点。
调节性SMAD转录因子(R-SMADS),特别是SMAD 1,5和8。[2]在其磷酸化时,R-SMADS与共同的共肌(SMAD 4)寡聚并转移到核,以调节BMP靶基因的表达。[2b,3] BMP-SMAD信号传导的作用已充分记录在胚胎发生中,尤其是心脏中胚层的形成。[4]在发育中的胚胎中,BMP是从胚外中胚层分泌的,产生形态学的BMP梯度,在浓度,空间和时间下,该梯度指导祖细胞细胞向心脏中胚层的分化。[5]基于胚胎心脏发展的观察结果,在小鼠和人PSC模型中已经开发了采用BMP受体激活的定向分化方案。[4C,6]与这些观察结果一致,我们最近发现,激活蛋白A,BMP4,CHIR99021和FGF2(ABCF-求解)支持心脏中介体形成,包括所有测试的HPSC系(包括胚胎和诱导的Pluripotent semorts),以及在所有测试的HPSC系中,以及随着诱导的PLURIPOTENT的应用 - 心肌。[7]