摘要:人工智能 (AI) 结合了算法、机器学习和自然语言处理的应用。AI 在教育领域有多种应用,例如自动评估和面部识别系统、个性化学习工具和微博系统。这些 AI 应用有可能通过支持学生的社交和认知发展来提高教育能力。尽管具有这些优势,但 AI 应用仍存在严重的伦理和社会缺陷,而这些缺陷在 K-12 教育中很少被考虑。将这些算法融入教育可能会加剧社会现有的系统性偏见和歧视,使来自边缘化和服务不足群体的学生的隐私、自主权和监视问题长期存在,并加剧现有的性别和种族偏见。在本文中,我们探讨了 AI 在 K-12 教育中的应用,并强调了它们的道德风险。我们引入教学资源,帮助教育工作者应对整合人工智能的挑战,并提高 K-12 学生对人工智能和道德的理解。本文最后提出了研究建议。
不要错过赢得奖项和协助机构采用#AI及相关技术(如#NLP #ML)以更好地服务美国人民的机会!快点!@GSA_TTS 的#AppliedAIChallenge 还剩一周,详情请见:(插入 challenge.gov 链接)
随着手机摄像头的质量开始在现代智能手机中发挥关键作用,人们越来越关注用于改善手机照片各个感知方面的 ISP 算法。在这次移动 AI 挑战赛中,目标是开发一个基于深度学习的端到端图像信号处理 (ISP) 管道,该管道可以取代传统的手工制作的 ISP,并在智能手机 NPU 上实现近乎实时的性能。为此,参赛者获得了一个新颖的学习到的 ISP 数据集,其中包含使用索尼 IMX586 Quad Bayer 移动传感器和专业的 102 兆像素中画幅相机拍摄的 RAW-RGB 图像对。所有模型的运行时间都在联发科 Dimensity 1000+ 平台上进行评估,该平台配备专用的 AI 处理单元,能够加速浮点和量化神经网络。所提出的解决方案与上述 NPU 完全兼容,能够在 60-100 毫秒内处理全高清照片,同时实现高保真效果。本文提供了本次挑战赛中开发的所有模型的详细描述。
○探索现实生活中的应用:调查AI已纳入可持续能源计划的案例研究。这些示例提供了有关AI如何用于优化能源效率,管理可再生资源并减少环境影响的实用见解。寻找学术论文,行业报告或新闻报道,这些文章突出了特定的项目,公司或组织利用AI来推进清洁能源解决方案和可持续性努力的组织。
任何渴望参与这一历史性活动的人都可以加入世界队,通过自己的设备实时在线玩游戏。由 it.com Domains 设计并基于 Stockfish AI 引擎的 AI 顾问系统将为参与者提供每个动作的三个选项,模拟不同的游戏级别——大师级、高级和业余。参与者将不知道哪个动作对应哪个级别。投票时间为 30 秒,最受欢迎的选项将成为世界队的官方动作。实时投票分布将显示在网站上。汉斯·尼曼则总共有 5 分钟的时间来下棋。
AI 城市挑战赛的创立秉承两个目标:(1)推动智能视频分析研究和开发的边界,以实现更智能的城市用例;(2)评估性能水平足以引起现实世界采用的任务。交通运输是适合采用该技术的一个领域。第五届 AI 城市挑战赛吸引了来自 38 个国家的 305 支参赛队伍,他们利用城市规模的真实交通数据和高质量的合成数据在五个挑战赛道上展开角逐。赛道 1 涉及基于视频的自动车辆计数,评估内容包括算法有效性和计算效率。赛道 2 涉及城市规模的车辆重新识别,使用增强合成数据大幅增加了该任务的训练集。赛道 3 解决了城市规模的多目标多摄像头车辆跟踪问题。赛道 4 解决了交通异常检测问题。赛道 5 是一条新赛道,使用自然语言描述解决车辆检索问题。评估系统显示了所有提交结果的一般排行榜,以及仅限于比赛参与规则的结果公开排行榜,其中团队不得在工作中使用外部数据。公开排行榜显示的结果更接近注释数据有限的真实情况。结果显示了人工智能在智能交通中的前景。某些任务的最新性能表明这些技术已准备好在现实世界系统中采用。
技术挑战 发展中的挑战。过去,以色列国防军、工业界和学术界之间的关系是这样的:军队主导技术发展,而商业公司和学术界采用所开发的技术。近年来,这种情况发生了逆转:商业公司进行大部分开发,而军队采用技术并使其适应其需求。230 这给开发高质量的安全技术带来了困难,因为军队不具备所需的专业知识。虽然民用人工智能公司依赖高级学者或领先的学术机构,但安全机构在开发基于人工智能的知识或产品方面面临挑战。此外,安全机构不从事独立研究和开发,而独立研究和开发是实现比较优势所必需的未来专业能力的基础设施。然而,安全机构目前正在缩小与民用工业的差距。将民用技术用于军事用途。将民用技术用于军事用途带来了挑战,因为它会导致算法提供不合适的解决方案,因为算法是针对其他需求进行训练的。231
另请参阅:可穿戴传感器在 SARS-CoV-2 感染检测中的表现:系统评价,Mitratza 和 Goodale 等人。《柳叶刀数字健康》
我确定了 AI 如何成为问题的创造性解决方案。我在设计过程中考虑了限制因素。在设计过程中,我预见并解决了解决方案面临的挑战。我从头到尾规划并考虑了用户的体验。我反思了从我的设计经验中获得的见解和成长领域。
对AI系统的兴起的一个重要问题是加剧偏见和算法歧视的潜力。最近的行政命令反映了确保联邦政府使用AI系统的重要性,这与更广泛的政策一致,以提高公平并防止非法歧视。,例如,行政命令(EO)13,985关于通过联邦政府明确提高种族平等和支持欠服务的社区的支持,要求联邦政府机构对联邦政策和计划对人口统计群体的差异影响进行评估; EO 14,091关于通过联邦政府进一步推进对服务不足的社区的进一步推进种族平等和支持,将与股权相关的联邦机构的要求扩展到AI和自动化系统;和EO 14,110在安全,安全和值得信赖的1