数字业务模型已演变为合并各种类型的渠道,这是商业模型画布的关键组成部分。与传统商业模式不同,数字渠道远离了物理互动,而是专注于在线平台。数字业务模型中渠道的主要分类基于客户获取,销售,价值交付和保留。不同垂直行业中数字业务的示例包括: *电子商务:亚马逊,Etsy,Wayfair +客户获取与销售:具有产品描述,结帐,评论,评论,过滤器,搜索和导航功能的网站 +价值交付渠道:应用程序诸如Kindle Reader Device/App之类的应用; transport and delivery channels for physical goods + Support channels on their website * Content & Media: Netflix, YouTube, Spotify, Medium, Apple News + Channel examples: Netflix's transformation from DVD-by-mail to streaming service with value delivery channels including smart consumer electronics + Customer acquisition channels: social media, media outlets, film festivals * Asset & Service Sharing (Sharing Economy): Uber, DoorDash, Airbnb + Transaction渠道:通过应用程序或网站管理交易,包括计划,预订,付款和主机与客人之间的沟通。这些示例说明了不同的数字业务如何运行其渠道以实现客户获取,销售,价值交付和保留。数字企业利用各种渠道来获取客户并促进销售,包括口碑,免费媒体报道以及在线平台Booking.com和Facebook。用户可以自定义设置以进行安全性,隐私等。在线旅行社(OTA)垂直的数字业务的关键渠道包括Booking.com的网站,移动应用程序和TripAdvisor等间接渠道。客户获取渠道还包括其他OTA和META搜索引擎(例如Kayak.com和Google Hotel Ads)的性能广告。在社交媒体垂直方面,Facebook通过其应用程序/网站以其新闻提要,通知,聊天/消息功能和自动交易而脱颖而出。Software-As-A-Service(SaaS)垂直功能具有Salesforce和Adobe产品等公司,通过网站和应用渠道而不是桌面软件安装提供价值。客户获取渠道包括免费增值模型,免费试验,付费广告,协作用户的口碑和单面网络效果,以取得更好的结果。业务模型Canvas中的渠道构建块定义了组织如何与其选择的客户细分市场进行交流并为价值提供价值,从而在定义客户体验中发挥了重要作用。渠道可以归类为营销,销售或分销渠道,与公司与目标客户领域链接的策略的“如何”联系在一起。公司通常会采用吸引和留住客户的单独策略,如果针对多个组,则列出各种客户群的不同渠道。1990年代之前的渠道有限选择主要是直接销售,但是现代企业现在可以从各种数字渠道中选择与客户联系。与销售人员建立联系,并发生了物理分布。现在,公司可以选择使用物理渠道或Web/移动渠道向目标客户细分提供其价值主张。分销渠道是营销组合中的四个PS之一,代表组织如何使其产品或服务最终消费者可用。可以是直接的,制造商直接向客户出售并间接涉及购买和转售产品的中介机构。在决定分销策略时,组织必须考虑多个因素,包括拥有渠道,与他人合作或使用两者的组合。正如戴尔(Dell)和亚马逊(Amazon)等巨人所看到的那样,经过深思熟虑的分销策略可以成为竞争优势的来源。如果频道以客户为中心,它将更加成功。选择分销渠道时,必须考虑五个关键要素:目标市场或客户群,渠道要求的投资,产品标准化,对渠道的控制以及与分销商的关系持续时间。渠道的某些典型目的包括向客户提供有关产品和服务的教育,为客户提供评估价值主张的机会,为客户提供购买所选产品或服务的设施。价值主张是任何企业的关键方面,为客户提供满足其需求的售后服务。通道阶段是通道通常同时通过的五个阶段。第1阶段:意识重点是向客户介绍产品和服务,突出营销和广告工作。此阶段允许客户理解价值主张。第2阶段:评估使客户能够通过提供信息,演示或试验来评估价值主张。这一阶段促进了公司之间的竞争,帮助客户做出明智的选择。第3阶段:购买是客户购买首选产品或服务的销售过程。第4阶段:交付确保承诺的价值主张已交付给客户,从而定义了产品如何到达产品。最后,第5阶段:在销售提供客户支持和护理之后,为产品和服务创造了倡导者。有不同的渠道类型可以弥合客户与公司之间的差距。自己的渠道涉及直接销售部队,网站或实物商店,允许与客户建立直接关系和更高的利润率。但是,这种方法需要对基础设施和生产进行大量投资。合作伙伴渠道是间接渠道,公司不直接通过批发商或零售商等中介机构向客户销售。这种方法提供了较低的利润率,但市场渗透率更快,基础设施投资减少。Heineken利用其酒吧网络,利用多个分销渠道吸引客户。同样,Apple拥有商店,高级经销商,移动网络,零售连锁店和网站出售其产品。这些渠道的不同盈利能力是显而易见的。苹果发达的商店为消费者提供了沉浸式的体验,允许与客户直接建立关系。这种方法可能会影响盈利能力,但使公司能够建立联系。替代分销渠道的优点和缺点包括个人销售,互联网,电话和邮件/电子邮件。个人销售提供示威,交付和担保等便利,同时花费较低,并提供更高的投资回报。但是,对于大型组织而言,这可能是昂贵的,并且覆盖范围有限。互联网提供了对广泛客户群,便利性和个性化信息的低成本访问权限,但缺乏人类联系并具有潜在的缺点。电话联系人高效,廉价且可用于建立关系,建立潜在客户并吸引偏远客户,尽管如果外包或用于营销,这似乎似乎是侵入性的。邮件/电子邮件通信价格便宜,可自定义,并且可以轻松更改,使其适合品牌形象创建,创新公告和促进商誉。然而,这种媒介存在挑战。注意:文本仍然是原始语言以保持其完整性。作为客户作为垃圾邮件的可能性,或者不愿仔细阅读其内容。这种媒介通常的投资回报率很低(ROI)。可以通过零售商,代理/经纪人/代表和分销商来实现间接分布间接分布。零售商零售商拥有既定的基础设施,例如商店,网页和营销策略。他们提供个人服务,售后支持和市场情报。但是,此渠道导致利润率降低和失控的损失,从而使业务与最终客户断开了连接。代理商/经纪人/代表这些中介提供个人销售,既定的客户关系和广泛的网络。他们共享间接费用,承担产品促销并提供市场情报。但是,此渠道对价格敏感,难以控制和培训员工。代理商可以代表竞争品牌,并优先考虑对最畅销品牌的忠诚度。分销商分销商具有集中的客户群,承担库存风险并提供技术培训。他们拥有更广泛的范围,但具有竞争性的品牌,影响最终产品定价并影响客户的最终产品。此外,分销商提供低客户智能,并需要公司的投资。案例研究:Google是全球最大的技术公司Google,使用两个渠道向客户群提供其价值主张。它具有全球销售和支持团队,以及多产品销售队伍。对于个别客户,Google提供了一种DO-IT-IT-您自己(DIY)方法,以高度自动化水平为方便起见。Google的全球销售和支持团队由跨行业的专业团队组成,促进了与广告商和网络成员的关系,以最大程度地利用他们的关系。销售人员专注于与主要广告商和高级互联网公司建立关系,销售搜索,显示和移动广告。
钙库操纵的钙离子内流 (SOCE) 是一种广泛的细胞钙离子信号传导机制,它源于钙离子通过 Orai 家族钙通道跨质膜流入,以响应细胞内钙离子库的消耗。Orai 通道是神经元和神经胶质细胞中一种重要的钙离子内流机制,它由一种独特的由内而外的门控过程激活,该过程涉及与内质网钙离子传感器 STIM1 和 STIM2 的相互作用。最近的证据表明,SOCE 广泛存在于神经系统的所有领域,而它的生理学和病理生理学现在才刚刚开始被人们了解。在这里,我们回顾了有关神经系统中 SOCE 机制及其对基因表达、神经元兴奋性、突触可塑性和行为的贡献的越来越多的文献。我们还探讨了 SOCE 与神经系统疾病之间日益密切的联系,并讨论了针对 SOCE 对脑部疾病的治疗意义。
DNA 存储是一项快速发展的技术,它使用四进制编码将数字数据编码为核苷酸序列,其中碱基 A 、C 、G 和 T 代表信息 [2],[3]。这些序列或链通过称为合成的过程产生,并通过测序检索。该方法的一个关键方面是在合成过程中生成每条链的多个副本。在本文中,我们通过引入复合 DNA 字母探索了一种利用这种冗余的新方法 [1],[4]–[8]。复合 DNA 字母由混合不同的核苷酸形成,实验表明它可以提高数据编码性能 [4],[5],[8]。潜在的好处是显而易见的:虽然标准的四字母 DNA 编码每个通道使用 log(4) = 2 位,但复合编码提供了无限的容量,使较短的链能够编码更多的数据。这一点至关重要,因为较短的链可以降低合成成本 [5] 并降低出错的风险,而出错的风险会随着链长度的增加而增加 [9]。编写复合字母并随机读取 n 份副本可以建模为一个嘈杂的通信信道,特别是多项式信道 [1]。该信道的输入是一个长度为 k = 4 的概率向量,表示核苷酸的混合。通道输出遵循多项分布,进行 n 次试验,概率由输入向量决定。通道的最大信息存储率或容量是通过在所有可行的输入分布选择 [10](即 (k − 1) 维概率单纯形上的分布)中最大化输入和输出之间的互信息来获得的。先前的研究 [1] 表明,即使对于较小的 n 值(例如 n = 9),最大化容量的输入分布也需要数十个质点。此外,如缩放定律 [11] 所示,支持大小随容量呈指数增长。这对 DNA 存储系统提出了挑战,因为每个质点对应一种不同的核苷酸混合物,而可能的混合物数量是有限的。为了解决这个问题,我们的论文重点计算了容量实现
在时空中,事件 A 和 B 可以有三种因果关系:A 先于 B ,B 先于 A ,或者 A 和 B 有因果分离,即它们位于一个类空区间。量子力学允许存在与这些情况都不对应的因果结构。启发式地,这可以描绘为将 A 和 B 之间的顺序置于量子叠加中。更准确地说,已经提出了几种使用“过程矩阵”或“量子开关”来实现不确定因果顺序的方法 [1– 6]。虽然这些方法在数学上并不严格等价,但它们都支持一个基本思想:不确定因果顺序本质上是一种量子现象,它为迄今为止主要在时空理论中探索的概念提供了新的启示。最近,在几种量子开关的实现中已经通过实验观察到了这种现象 [7–12]。为了准确衡量量子理论为因果关系研究带来的新元素,可以将因果序的量子控制视为提供非经典通信优势的一种资源,即量子开关中的两个噪声信道可以比任何单个信道传输更多的信息 [13]。这种方法的好处是可以立即阐明量子开关的物理意义,但它依赖于一个目前尚未解决的问题,即任何局部方是否可以操作性地实施这种量子控制 [14]。在本文中,我们假设实证研究已经给出了一个积极的启发式方法:通过量子开关对因果序的量子控制已经通过实验获得。接下来,我们努力从理论上更好地理解此类设置所展示的优势。特别地,一个长期存在的问题涉及这种优势的起源:为了否认量子开关是一个独立的资源,有人认为,两个信道的单程量子叠加,在没有不确定因果顺序的情况下,已经导致了类似的结果[15,16]。在第二部分介绍基本的数学概念之后,我们探讨了这种非因果顺序的有争议的起源。
注:1. 数据是通过安装在 1 英寸 2 FR-4 板上(2OZ 铜厚)进行测试的 2. 数据是通过安装在建议的最小 FR-4 板上进行测试的 3. 数据是通过脉冲测试的,脉冲宽度≤300μs,占空比≤2% 4. 由设计保证,不受生产影响
纠错是构建量子计算机的关键步骤。量子系统会因退相干和噪声而产生误差。通过使用量子纠错,可以防止量子计算设备中的量子信息被破坏。人们为开发和研究量子纠错码做出了许多努力和改进。其中,拓扑码(如表面码 [1], [2])因其高阈值和局部性 [3] 而有望用于构建实用的量子计算机。色码 [4] 是另一种有前途的用于容错量子计算的拓扑量子纠错码。它们提供的阈值相对较好,略低于表面码 [5], [6], [7]。然而,与表面码不同,横向 Clifford 运算可以充当逻辑 Clifford 运算 [8]。量子擦除通道 [9], [10] 是简单的噪声模型,其中一些量子位被擦除,并且我们已知哪些量子位被擦除。当一个量子比特被擦除时,该量子比特被认为会受到随机选择的泡利误差的影响。了解哪些量子比特被擦除可能会使开发解码算法变得不那么复杂。最近,有人提出了在量子擦除信道上以线性时间对表面码进行最大似然 (ML) 解码 [11],它被用作表面码和色码的近线性时间解码算法的子程序 [6],通过将它们投影到表面码 [12]、[7] 上来纠正泡利误差和擦除。在本文中,我们证明了当一组被擦除的量子比特满足某个可修剪性条件时,在量子擦除信道上对色码进行线性时间 ML 解码是可能的,并提出了一种解码算法,我们称之为修剪解码。我们还提供了当不遵守可修剪性约束时如何使用修剪解码的方法。
媒体联系方式 ASKA Pharmaceutical Holdings Co., Ltd. 企业规划部 电话:+81-3-5484-8366 邮箱:kouhou@aska-pharma.co.jp
量子密码术 [1] 是最古老的量子技术之一,已成为应对量子计算机挑战的杰出候选技术 [2]。尤其是量子密钥分发 (QKD),其发展速度非常快,其最终目标是使远距离用户能够共享一个密钥,该密钥必须无法被窃听者获知,从而提供高度安全的加密。QKD 系统面临的关键挑战包括通信系统中的信道损耗和噪声水平。这是影响 QKD 性能及其实现的两个主要障碍,尤其是在长距离传输中 [3]。直到最近,光纤一直是研究和实验大多数 QKD 协议的主要平台。但它们的长距离安全距离有限,主要是因为光纤链路的透射率呈指数衰减。一般来说,有两种解决方案可以克服这一限制:使用量子中继器[4-10]或使用自由空间和卫星链路[11-17]。当前基于地面光纤的量子通信系统的覆盖范围仅限于几百公里[18],而我们似乎即将建立全球量子通信网络,即量子互联网[19,20]。因此,最近的研究引起了人们对星载 QKD 和空间量子通信的浓厚兴趣[17],旨在了解自由空间、高空平台站(HAPS)系统和卫星链路如何帮助突破当前的距离限制,同时保证实现量子安全。人们已经取得了重要进展,特别是在单向空间量子通信的极限和安全性方面[21-23],结果表明,秘密比特可以在湍流大气中安全地分发,无论是弱湍流还是强湍流[24]。在 QKD 科学的另一个不同分支中,独立于测量设备 (MDI) 的 QKD [25,26](相关实验另见参考文献 [27-29])是放宽典型点对点 QKD 协议中的信任假设的最有趣和研究最充分的方案之一。更准确地说,在 MDI 中,人们不需要假设将在他们之间分发密钥的合法方的检测设备是可信的。这是因为据称不受信任的第三方
抽象的静止胰腺星状细胞(PSC)仅代表胰腺组织的比例很低,但是它们的激活导致基质重塑和与慢性胰腺炎和胰腺导管性性阴性性腺瘤瘤(PDAC)相关的病理学相关的纤维化(PDAC)。PSC激活可以通过各种应力诱导,包括酸中毒,生长因子(PDGF,TGFβ),缺氧,高压或与胰腺癌细胞的细胞间通信。激活的PSC靶向代表了一种有希望的治疗策略,但是关于PSC激活的基础的分子机制知之甚少。鉴定与慢性胰腺炎和PDAC中与脱木质有关的PSC激活的新生物标志物可能导致外分泌胰腺疾病治疗的新治疗靶标。 离子通道和转运蛋白是跨膜蛋白,包括包括PDAC在内的许多生理和病理过程。 他们众所周知,它们可以充当组织微环境的生物传感器,并且可以轻松地用于药物。 但是,它们在PSC激活中的作用尚未完全理解。 在这篇综述中,我们简要讨论了活化的PSC在胰腺炎症和病理纤维化中的作用(与慢性胰腺炎和PDAC有关),并在这些过程中描述了特定离子通道和转运蛋白(Ca 2+,K +,Na +和Cl)在这些过程中的作用。鉴定与慢性胰腺炎和PDAC中与脱木质有关的PSC激活的新生物标志物可能导致外分泌胰腺疾病治疗的新治疗靶标。离子通道和转运蛋白是跨膜蛋白,包括包括PDAC在内的许多生理和病理过程。他们众所周知,它们可以充当组织微环境的生物传感器,并且可以轻松地用于药物。但是,它们在PSC激活中的作用尚未完全理解。在这篇综述中,我们简要讨论了活化的PSC在胰腺炎症和病理纤维化中的作用(与慢性胰腺炎和PDAC有关),并在这些过程中描述了特定离子通道和转运蛋白(Ca 2+,K +,Na +和Cl)在这些过程中的作用。
Bakkensen和Barrage 2021; Casey,Fried和Gibson 2022; Rudik等。2021)•气候和长期发展:我们发现错误分配通道是越野TFP差异的关键驱动力。