摘要 - 癫痫是一种常见的神经系统疾病,其特征是在全球范围内影响多达7,000万人的癫痫发作。在生命的头十年中,每150名儿童中大约有一个被诊断出患有癫痫病。脑电图是诊断癫痫发作和其他脑部疾病的重要工具。但是,脑电图的专家视觉分析很耗时。除了减少专家注释时间外,自动癫痫发作检测方法是帮助专家分析脑电图的强大工具。对小儿脑电图中癫痫发作的自动检测的研究已被提出。深度学习算法通常用于小儿癫痫发作检测方法;但是,它们在计算上很昂贵,并且需要很长时间才能开发。可以使用转移学习来解决此问题。在这项研究中,我们在小儿EEG的多个通道上开发了一种基于转移学习的癫痫发作检测方法。公开可用的CHB-MIT EEG数据集用于构建我们的方法。数据集分为训练(n = 14),验证(n = 4)和测试(n = 6)。从10 s EEG信号产生的具有5 s重叠的频谱图用作三个预训练的传输学习模型(RESNET50,VGG16和InceptionV3)的输入。我们小心翼翼地将孩子分成培训或测试集中,以确保测试集是独立的。基于脑电图测试集,该方法具有85.41%的精度,85.94%的召回率和85.49%的精度。此方法有可能协助研究人员和临床医生对小儿脑电图中癫痫发作的自动分析。
摘要:与单个有机或无机固体电解质相比,陶瓷中的聚合物复合固体电解质(PIC-CSE)具有重要的优势。在常规的PIC -CSE中,离子传导途径主要局限于陶瓷,而与陶瓷 - 聚合物界面相关的更快路线仍被阻塞。这一挑战与两个关键因素有关:(i)由于陶瓷聚集而建立广泛而不间断的陶瓷 - 聚合物接口的困难; (ii)陶瓷 - 聚合物界面由于其固有的不兼容而对导电没有反应。在这里,我们通过引入与聚合物兼容的离子液体(PCIL)提出策略,以在陶瓷和聚合物基质之间进行介导。这种介导涉及与陶瓷表面上与李 +离子相互作用的极地PCIL以及PCIL和聚合物链的极性成分之间的相互作用。该策略解决了陶瓷聚合问题,从而导致均匀的图片-CSE。同时,它通过建立互穿的通道来激活陶瓷 - 聚合物界面,从而促进Li +离子在整个陶瓷相,陶瓷 - 聚合物界面和中间途径的有效运输。因此,获得的PIC -CSE表现出高离子电导率,特殊的柔韧性和稳健的机械强度。其锂金属袋细胞的高能量密度为424.9 WH kg -1(不包括包装膜)和穿刺安全性。这项工作为使用商业生存能力设计PIC -CSE铺平了道路。■简介包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.
两个量子操作不能同时实现是量子理论的基本特征之一 [ 1 , 2 ]。该原理最著名的两个体现是海森堡不确定性原理(量子粒子的位置和动量不能同时测量 [ 1 ])和不可克隆定理(不存在任何物理操作能够产生两个完全相同的未知、任意量子态 [ 3 , 4 ])。一般而言,如果两个(或多个)量子操作(如测量、通道或仪器)可以看作是一个共同操作的边际,则称它们为兼容的;如果不存在以原始操作为边际的物理操作,则称它们为不兼容的。由于量子理论建立在希尔伯特空间上,一般的量子测量被认为是正算子值测度(POVM)。在量子信息论中,不兼容概念有许多应用,如纠缠的稳健性[5,6]、测量不兼容的稳健性[7–9]、量子非局域性[10,11]、量子操控[7,12]、量子态鉴别[13–15]、量子资源理论[16]和量子密码学[17]。在现代量子理论形式化中,量子态物理变换的最一般描述是用量子信道来描述的[18,19]。量子信道不兼容的概念是从输入输出设备的角度提出的[20,21]。在[21]中,作者表明量子信道不兼容的定义是量子可观测量联合可测性的自然概括。大量研究从不同角度处理这一概念 [ 15 , 22 – 24 ]。一般而言,判断给定的一组量子操作是否兼容可以用半定程序表示 [ 25 ]。然而,程序的大小会随着考虑的操作数量呈指数增长。因此,当系统数量适中时,即使对于较小的系统规模(如量子比特),这种方法也会在计算上令人望而却步。为了解决这个维数问题,引入了(不)兼容性标准;这些条件仅对于给定通道组的兼容性才是必要或充分的。与量子测量的情况一样 [ 20 ],兼容性标准 [ 26 ] 比不兼容性标准多得多。
数字业务模型已演变为合并各种类型的渠道,这是商业模型画布的关键组成部分。与传统商业模式不同,数字渠道远离了物理互动,而是专注于在线平台。数字业务模型中渠道的主要分类基于客户获取,销售,价值交付和保留。不同垂直行业中数字业务的示例包括: *电子商务:亚马逊,Etsy,Wayfair +客户获取与销售:具有产品描述,结帐,评论,评论,过滤器,搜索和导航功能的网站 +价值交付渠道:应用程序诸如Kindle Reader Device/App之类的应用; transport and delivery channels for physical goods + Support channels on their website * Content & Media: Netflix, YouTube, Spotify, Medium, Apple News + Channel examples: Netflix's transformation from DVD-by-mail to streaming service with value delivery channels including smart consumer electronics + Customer acquisition channels: social media, media outlets, film festivals * Asset & Service Sharing (Sharing Economy): Uber, DoorDash, Airbnb + Transaction渠道:通过应用程序或网站管理交易,包括计划,预订,付款和主机与客人之间的沟通。这些示例说明了不同的数字业务如何运行其渠道以实现客户获取,销售,价值交付和保留。数字企业利用各种渠道来获取客户并促进销售,包括口碑,免费媒体报道以及在线平台Booking.com和Facebook。用户可以自定义设置以进行安全性,隐私等。在线旅行社(OTA)垂直的数字业务的关键渠道包括Booking.com的网站,移动应用程序和TripAdvisor等间接渠道。客户获取渠道还包括其他OTA和META搜索引擎(例如Kayak.com和Google Hotel Ads)的性能广告。在社交媒体垂直方面,Facebook通过其应用程序/网站以其新闻提要,通知,聊天/消息功能和自动交易而脱颖而出。Software-As-A-Service(SaaS)垂直功能具有Salesforce和Adobe产品等公司,通过网站和应用渠道而不是桌面软件安装提供价值。客户获取渠道包括免费增值模型,免费试验,付费广告,协作用户的口碑和单面网络效果,以取得更好的结果。业务模型Canvas中的渠道构建块定义了组织如何与其选择的客户细分市场进行交流并为价值提供价值,从而在定义客户体验中发挥了重要作用。渠道可以归类为营销,销售或分销渠道,与公司与目标客户领域链接的策略的“如何”联系在一起。公司通常会采用吸引和留住客户的单独策略,如果针对多个组,则列出各种客户群的不同渠道。1990年代之前的渠道有限选择主要是直接销售,但是现代企业现在可以从各种数字渠道中选择与客户联系。与销售人员建立联系,并发生了物理分布。现在,公司可以选择使用物理渠道或Web/移动渠道向目标客户细分提供其价值主张。分销渠道是营销组合中的四个PS之一,代表组织如何使其产品或服务最终消费者可用。可以是直接的,制造商直接向客户出售并间接涉及购买和转售产品的中介机构。在决定分销策略时,组织必须考虑多个因素,包括拥有渠道,与他人合作或使用两者的组合。正如戴尔(Dell)和亚马逊(Amazon)等巨人所看到的那样,经过深思熟虑的分销策略可以成为竞争优势的来源。如果频道以客户为中心,它将更加成功。选择分销渠道时,必须考虑五个关键要素:目标市场或客户群,渠道要求的投资,产品标准化,对渠道的控制以及与分销商的关系持续时间。渠道的某些典型目的包括向客户提供有关产品和服务的教育,为客户提供评估价值主张的机会,为客户提供购买所选产品或服务的设施。价值主张是任何企业的关键方面,为客户提供满足其需求的售后服务。通道阶段是通道通常同时通过的五个阶段。第1阶段:意识重点是向客户介绍产品和服务,突出营销和广告工作。此阶段允许客户理解价值主张。第2阶段:评估使客户能够通过提供信息,演示或试验来评估价值主张。这一阶段促进了公司之间的竞争,帮助客户做出明智的选择。第3阶段:购买是客户购买首选产品或服务的销售过程。第4阶段:交付确保承诺的价值主张已交付给客户,从而定义了产品如何到达产品。最后,第5阶段:在销售提供客户支持和护理之后,为产品和服务创造了倡导者。有不同的渠道类型可以弥合客户与公司之间的差距。自己的渠道涉及直接销售部队,网站或实物商店,允许与客户建立直接关系和更高的利润率。但是,这种方法需要对基础设施和生产进行大量投资。合作伙伴渠道是间接渠道,公司不直接通过批发商或零售商等中介机构向客户销售。这种方法提供了较低的利润率,但市场渗透率更快,基础设施投资减少。Heineken利用其酒吧网络,利用多个分销渠道吸引客户。同样,Apple拥有商店,高级经销商,移动网络,零售连锁店和网站出售其产品。这些渠道的不同盈利能力是显而易见的。苹果发达的商店为消费者提供了沉浸式的体验,允许与客户直接建立关系。这种方法可能会影响盈利能力,但使公司能够建立联系。替代分销渠道的优点和缺点包括个人销售,互联网,电话和邮件/电子邮件。个人销售提供示威,交付和担保等便利,同时花费较低,并提供更高的投资回报。但是,对于大型组织而言,这可能是昂贵的,并且覆盖范围有限。互联网提供了对广泛客户群,便利性和个性化信息的低成本访问权限,但缺乏人类联系并具有潜在的缺点。电话联系人高效,廉价且可用于建立关系,建立潜在客户并吸引偏远客户,尽管如果外包或用于营销,这似乎似乎是侵入性的。邮件/电子邮件通信价格便宜,可自定义,并且可以轻松更改,使其适合品牌形象创建,创新公告和促进商誉。然而,这种媒介存在挑战。注意:文本仍然是原始语言以保持其完整性。作为客户作为垃圾邮件的可能性,或者不愿仔细阅读其内容。这种媒介通常的投资回报率很低(ROI)。可以通过零售商,代理/经纪人/代表和分销商来实现间接分布间接分布。零售商零售商拥有既定的基础设施,例如商店,网页和营销策略。他们提供个人服务,售后支持和市场情报。但是,此渠道导致利润率降低和失控的损失,从而使业务与最终客户断开了连接。代理商/经纪人/代表这些中介提供个人销售,既定的客户关系和广泛的网络。他们共享间接费用,承担产品促销并提供市场情报。但是,此渠道对价格敏感,难以控制和培训员工。代理商可以代表竞争品牌,并优先考虑对最畅销品牌的忠诚度。分销商分销商具有集中的客户群,承担库存风险并提供技术培训。他们拥有更广泛的范围,但具有竞争性的品牌,影响最终产品定价并影响客户的最终产品。此外,分销商提供低客户智能,并需要公司的投资。案例研究:Google是全球最大的技术公司Google,使用两个渠道向客户群提供其价值主张。它具有全球销售和支持团队,以及多产品销售队伍。对于个别客户,Google提供了一种DO-IT-IT-您自己(DIY)方法,以高度自动化水平为方便起见。Google的全球销售和支持团队由跨行业的专业团队组成,促进了与广告商和网络成员的关系,以最大程度地利用他们的关系。销售人员专注于与主要广告商和高级互联网公司建立关系,销售搜索,显示和移动广告。
钙库操纵的钙离子内流 (SOCE) 是一种广泛的细胞钙离子信号传导机制,它源于钙离子通过 Orai 家族钙通道跨质膜流入,以响应细胞内钙离子库的消耗。Orai 通道是神经元和神经胶质细胞中一种重要的钙离子内流机制,它由一种独特的由内而外的门控过程激活,该过程涉及与内质网钙离子传感器 STIM1 和 STIM2 的相互作用。最近的证据表明,SOCE 广泛存在于神经系统的所有领域,而它的生理学和病理生理学现在才刚刚开始被人们了解。在这里,我们回顾了有关神经系统中 SOCE 机制及其对基因表达、神经元兴奋性、突触可塑性和行为的贡献的越来越多的文献。我们还探讨了 SOCE 与神经系统疾病之间日益密切的联系,并讨论了针对 SOCE 对脑部疾病的治疗意义。
量子密码术 [1] 是最古老的量子技术之一,已成为应对量子计算机挑战的杰出候选技术 [2]。尤其是量子密钥分发 (QKD),其发展速度非常快,其最终目标是使远距离用户能够共享一个密钥,该密钥必须无法被窃听者获知,从而提供高度安全的加密。QKD 系统面临的关键挑战包括通信系统中的信道损耗和噪声水平。这是影响 QKD 性能及其实现的两个主要障碍,尤其是在长距离传输中 [3]。直到最近,光纤一直是研究和实验大多数 QKD 协议的主要平台。但它们的长距离安全距离有限,主要是因为光纤链路的透射率呈指数衰减。一般来说,有两种解决方案可以克服这一限制:使用量子中继器[4-10]或使用自由空间和卫星链路[11-17]。当前基于地面光纤的量子通信系统的覆盖范围仅限于几百公里[18],而我们似乎即将建立全球量子通信网络,即量子互联网[19,20]。因此,最近的研究引起了人们对星载 QKD 和空间量子通信的浓厚兴趣[17],旨在了解自由空间、高空平台站(HAPS)系统和卫星链路如何帮助突破当前的距离限制,同时保证实现量子安全。人们已经取得了重要进展,特别是在单向空间量子通信的极限和安全性方面[21-23],结果表明,秘密比特可以在湍流大气中安全地分发,无论是弱湍流还是强湍流[24]。在 QKD 科学的另一个不同分支中,独立于测量设备 (MDI) 的 QKD [25,26](相关实验另见参考文献 [27-29])是放宽典型点对点 QKD 协议中的信任假设的最有趣和研究最充分的方案之一。更准确地说,在 MDI 中,人们不需要假设将在他们之间分发密钥的合法方的检测设备是可信的。这是因为据称不受信任的第三方
抽象的静止胰腺星状细胞(PSC)仅代表胰腺组织的比例很低,但是它们的激活导致基质重塑和与慢性胰腺炎和胰腺导管性性阴性性腺瘤瘤(PDAC)相关的病理学相关的纤维化(PDAC)。PSC激活可以通过各种应力诱导,包括酸中毒,生长因子(PDGF,TGFβ),缺氧,高压或与胰腺癌细胞的细胞间通信。激活的PSC靶向代表了一种有希望的治疗策略,但是关于PSC激活的基础的分子机制知之甚少。鉴定与慢性胰腺炎和PDAC中与脱木质有关的PSC激活的新生物标志物可能导致外分泌胰腺疾病治疗的新治疗靶标。 离子通道和转运蛋白是跨膜蛋白,包括包括PDAC在内的许多生理和病理过程。 他们众所周知,它们可以充当组织微环境的生物传感器,并且可以轻松地用于药物。 但是,它们在PSC激活中的作用尚未完全理解。 在这篇综述中,我们简要讨论了活化的PSC在胰腺炎症和病理纤维化中的作用(与慢性胰腺炎和PDAC有关),并在这些过程中描述了特定离子通道和转运蛋白(Ca 2+,K +,Na +和Cl)在这些过程中的作用。鉴定与慢性胰腺炎和PDAC中与脱木质有关的PSC激活的新生物标志物可能导致外分泌胰腺疾病治疗的新治疗靶标。离子通道和转运蛋白是跨膜蛋白,包括包括PDAC在内的许多生理和病理过程。他们众所周知,它们可以充当组织微环境的生物传感器,并且可以轻松地用于药物。但是,它们在PSC激活中的作用尚未完全理解。在这篇综述中,我们简要讨论了活化的PSC在胰腺炎症和病理纤维化中的作用(与慢性胰腺炎和PDAC有关),并在这些过程中描述了特定离子通道和转运蛋白(Ca 2+,K +,Na +和Cl)在这些过程中的作用。
超宽带(UWB)基于位置的服务中的视力(NLOS)识别技术准确的非线识别技术对于无人机通信和自动导航等应用至关重要。然而,使用二进制分类(LOS/NLOS)的当前方法过多地简化了现实世界中的复杂性,具有有限的概括和对变化室内环境的适应性,从而降低了定位的准确性。本研究提出了一个极端的梯度提升(XGBOOST)模型,以识别多级NLOS条件。我们使用网格搜索和遗传算法优化模型。最初,网格搜索方法用于确定整数超参数的最有利值。为了实现优化的模型配置,遗传算法用于微调浮点高参数。模型评估利用了使用Qorvo DW1000 UWB设备获得的广泛的现实测量数据集,涵盖了各种室内场景。实验结果表明,我们提出的XGBoost在开源数据集中达到了99.47%的最高总体准确度,精度为99%,召回99%,F-SCORE为99%。此外,基于本地数据集,该模型的性能最高,精度为96%,精度为96%,召回97%,F评分为97%。与文献中当前的机器学习方法相反,该建议模型提高了分类精度,并有效地解决了NLOS/LOS识别作为多类传播通道。这种方法提供了一种强大的解决方案,具有在各种数据集类型和环境中的概括和适应性,以提供更可靠,准确的室内定位技术。
1 加州理工学院量子信息与物质研究所,美国加利福尼亚州帕萨迪纳 91125 2 西蒙斯计算理论研究所,美国加利福尼亚州伯克利 94720 3 麻省理工学院机械工程系和电子研究实验室,美国马萨诸塞州剑桥 02139 4 杜克大学物理系和电气与计算机工程系,美国北卡罗来纳州达勒姆 27708 5 斯坦福大学信息系统实验室,美国加利福尼亚州斯坦福 94305 6 路易斯安那州立大学赫恩理论物理研究所、物理与天文系和计算与技术中心,美国路易斯安那州巴吞鲁日 70803 7 斯坦福大学斯坦福理论物理研究所,美国加利福尼亚州斯坦福 94305
摘要 — 将信息编码在预先合成的脱氧核糖核酸 (DNA) 链 (称为基序) 组合中是一种有趣的 DNA 存储方法,有可能避免逐个核苷酸 DNA 合成的高昂成本。基于对 HelixWorks 经验数据集的分析,我们为这种设置提出了两种通道模型 (有干扰和无干扰),并分析了它们的基本限制。我们提出了一种编码方案,通过利用通道输出处可用的所有信息来接近这些限制,这与 Preuss 等人为类似设置开发的早期方案不同。我们强调了通道容量曲线与合成 (写入) 和测序 (读取) 成本之间的基本权衡之间的重要联系,并提供了一种方法来缓解解码复杂性随基序库大小而呈指数增长的问题。