获得了局部酉变换下酉量子比特信道的标准形式。具体而言,证明了酉量子信道的 Choi 矩阵的特征值形成标准形式的一组完整的不变量。由此立即可知,每个酉量子比特信道都是四个酉信道的平均值。更一般地,只要 2(p 1 , . . . , pm ) 由信道 Choi 矩阵的特征值向量优化,酉量子比特信道就可以表示为具有凸系数 p 1 , . . . , pm 的酉信道的凸组合。标准形式的酉量子比特信道会将 Bloch 球面变换到椭圆体上。我们研究了将 Bloch 球面发送到相应椭圆体的自然线性映射的详细结构。
一个人可以执行的量子状态的最通用的转换是什么?一个人可能想知道这个问题应该是什么意思:我们已经知道一些汉密尔顿h产生的schr schr odinger进化。我们还知道测量假设在测量时会改变状态。那么,问题应该是什么意思?实际上,当我们想到统一操作时,我们已经遇到了上面遇到的这种变化。当然,可以将这种A-Posteriori解释为某些哈密顿量产生的,但这并不是重点。这里的问题是关于可以做什么,可能的统一状态转换。本章的目的是使这种心态完成,并询问量子力学中通常可以进行哪种状态转换。对这个问题有一种抽象的,数学上有意识的方法,引入了完全积极的概念。与此对比,人们可以想到将单一进化和测量的成分放在一起。幸运的是,这些图片被证明是等价的。无论哪种方式,这都是由量子通道的概念给出的。鉴于我们在这里考虑了最一般的转换,因此实际的通信渠道的内涵是完全准确的:我们会看到,可以很好地捕获自然通信渠道(例如,Fiffers等),可以很好地捕获量子通道。
与图相关的自然过渡矩阵的混合(或准随机)属性可以通过其与完全图的距离来量化。不同的混合属性对应于测量此距离的不同范数。对于密集图,Chung、Graham 和 Wilson 在 1989 年的开创性工作中证明了两个这样的属性(称为谱扩展和均匀性)是等价的。最近,Conlon 和 Zhao 使用著名的 Grothendieck 不等式将这种等价性扩展到稀疏顶点传递图的情况。在这里,我们将这些结果推广到非交换或“量子”情况,其中过渡矩阵成为量子信道。特别是,我们表明,对于不可约协变量子信道,扩展等同于图的均匀性的自然类似物,推广了 Conlon 和 Zhao 的结果。此外,我们表明,在这些结果中,非交换和交换的格罗滕迪克不等式产生了最佳常数。
线粒体参与了多个细胞任务,例如ATP合成,代谢,代谢和离子转运,细胞凋亡的调节,线粒体DNA的发病,信号传导和遗传。线粒体的大多数正确功能基于大型电化学质子梯度,其成分(其内部线粒体膜电位)严格由通过线粒体内置的离子转运来控制。因此,线粒体功能严重取决于离子稳态,其干扰导致细胞功能异常。因此,发现通过膜影响离子通透性的线粒体离子通道定义了离子通道在不同细胞类型中的功能的新维度,这主要与线粒体离子通道在细胞生命和死亡中执行的重要任务有关。本综述总结了对动物线粒体离子通道的研究,特别关注其生物物理特性,分子身份和调节。此外,简要讨论了线粒体离子通道作为几种疾病的治疗靶标的潜力。
一个人可以执行的量子状态的最通用的转换是什么?一个人可能想知道这个问题应该是什么意思:我们已经知道一些汉密尔顿h产生的schr schr odinger进化。我们还知道测量假设在测量时会改变状态。那么,问题应该是什么意思?实际上,当我们想到统一操作时,我们已经遇到了上面遇到的这种变化。当然,可以将其解释为某些哈密顿量产生的a-posteriori,但这并不是重点。这里的重点是可以做什么,可能的统一状态转换。本章的目的是使这种心态完成,并询问量子力学中通常可以进行哪种状态转换。对这个问题有一种抽象的,数学上有意识的方法,引入了完全积极的概念。与此对比,人们可以想到将单一进化和测量的成分放在一起。幸运的是,这些图片结果相当。无论哪种方式,这都是由量子通道的概念给出的。鉴于我们在这里考虑了最一般的转换,因此实际通信通道的内涵是完全准确的:我们会看到,可以在量子通道方面很好地捕获自然通信通道(例如纤维提供的)。
量子信息论形成于近 30 年前,是一个自洽且多学科的研究领域,而它的起源可以追溯到 20 世纪 50 至 60 年代,当时香农信息论的基本思想得到了发展。在量子信息论中,信道及其容量的概念起着核心作用,它们衡量了信道的最终信息处理性能。有关量子信道的全面介绍,请参阅 [1]。量子信道是一种既能传输量子信息又能传输经典信息的通信信道。量子比特的状态就是量子信息的一个例子。量子信道是量子力学框架允许任意输入的最一般的输入-输出关系。从物理上讲,它们从一般开放系统的角度描述空间中的任何传输(例如通过光纤)和/或时间的演变(如量子存储器)。在数学上,它们的特征是线性、完全正映射,在薛定谔图中,以保留迹的方式作用于密度算符。对角量子信道在通信和物理中具有重要应用。有一些关于不同类型对角信道的研究,例如去极化信道[2-4,13]、转置去极化信道[5]和具有恒定 Frobenius 范数的对角信道(去极化、转置去极化、混合去极化经典和混合转置去极化经典)[6],这些研究在
CSC 406 讲座系列 (4),ABUAD 人类输入输出通道 输入 输出通道 人与外界的互动是通过接收和发送信息进行的:输入和输出。在与计算机的交互中,用户接收计算机输出的信息,并通过向计算机提供输入来做出响应 - 用户的输出成为计算机的输入,反之亦然。因此,使用输入和输出这两个术语可能会导致混淆,因此我们将在一定程度上模糊区别,并专注于所涉及的通道。这种模糊是适当的,因为尽管特定通道在交互中可能主要起到输入或输出的作用,但它很可能也用于其他角色。例如,视觉可能主要用于从计算机接收信息,但它也可用于向计算机提供信息,例如在使用眼动系统时注视特定的屏幕点。人类的输入主要通过感官,输出通过效应器的运动控制。人有五种主要感觉:• 视觉• 听觉• 触觉• 味觉• 嗅觉其中前三种对人机交互最重要。味觉和嗅觉目前在人机交互中还不起重要作用,而且目前还不清楚它们是否可以在一般计算机系统中得到利用,尽管它们可以在更专业的系统或增强现实系统中发挥作用。然而,视觉、听觉和触觉是核心。同样,还有许多效应器:• 四肢• 手指• 眼睛• 头部• 声音系统。在与计算机的交互中,手指通过打字或鼠标控制起主要作用,同时使用声音,以及眼睛、头部和身体位置。想象一下使用带有鼠标和键盘的个人计算机。您使用的应用程序具有图形界面,其中包含菜单、图标和窗口。在与这个系统的交互中,您主要通过视觉从屏幕上显示的内容中获取信息。但是,您也可以通过耳朵接收信息:例如,如果您犯了错误或者需要注意某件事,计算机可能会发出“嘟”声提醒您,或者在多媒体演示中可能会有语音评论。触觉也起着一定的作用,因为您会感觉到按键的移动(还会听到“咔嗒”声)或鼠标的方向,这会对您所做的事情提供重要的反馈。您自己也可以用手通过按键或移动鼠标向计算机发送信息。在这个例子中,视觉和听觉并不直接参与信息传递,尽管它们可以用来接收来自第三方来源(例如,一本书或另一个人的话语)的信息,然后将信息传输给计算机。视觉人类视觉是一种高度复杂的活动,受到一系列身体和感知的限制,但它是普通人的主要信息来源。我们可以将视觉感知粗略地分为两个阶段: • 身体接收来自外界的刺激,以及
尽管在神经科学方面取得了长足的进步,但仍然存在有关大脑的基本问题,包括主观经验和意识的起源。一些答案可能依赖于新的物理机制。鉴于在大脑中发现了生物光子,探索神经元除了使用精心研究的电信号外使用光子通信很有趣。大脑中的这种光子通信需要波导。在这里,我们回顾了最近的工作(S. Kumar,K。Boone,J。Tuszynski,P。Barclay和C. Simon,Scientific Reports 6,36508(2016)),建议髓鞘轴突可以用作光子波导。考虑到其现实的缺陷,对髓鞘轴突中的光传递进行了建模,并在体内和体外提出了实验,以检验该假设。讨论了对量子生物学的潜在影响。
[收到2023年5月2日; 2023年6月6日修订; 2023年6月7日接受的摘要:越来越多的证据表明超极化激活阳离子(HCN)通道在控制静息膜电位,起搏器活动,记忆形成,睡眠和唤醒中的作用。它们的失功可能与癫痫和与年龄相关的记忆下降的发展有关。神经元过度兴奋性参与癫痫生成和脑电图的去同步在人类阿尔茨海默氏病(AD)和动物模型的痴呆症过程中发生,但这些作用的基本离子和细胞机制尚不广泛地理解。有些人建议在包括AD在内的神经发生疾病过程中,参与记忆形成的theta节奏可以用作记忆障碍的标志。本综述重点介绍了超极化HCN通道,theta振荡,记忆形成及其在痴呆症(包括AD)中的作用之间的相互作用。虽然单独使用,但这些因素中的每个因素都与强有力的支持证据相互联系,但我们希望在这里将这种联系扩展到更具包容性的情况。因此,HCN通道可以为开发用于预防和/或治疗痴呆的新治疗剂提供分子靶标。关键词:阿尔茨海默氏病,痴呆症,拉莫三嗪,HCN通道,IH电流,theta振荡,记忆,EEG,EEG引言此评论研究了神经元兴奋性的超极化激活阳离子(HCN)通道的功能,EEG Theta theta theta band band Syncronication和Memory Cormination and Memory Cormitation和Memory cormatient。HCN通道会在许多类型的神经元中产生超极化激活的阳离子电流(I H)。它最近对HCN依赖性内阳离子当前生理学的干扰及其对痴呆症可能发育的贡献,例如阿尔茨海默氏病(AD)的贡献。最近的证据表明我参与了