项目5根据Chargaff规则,在DNA分子中,嘌呤的总数大约等于嘧啶的数量。在分析对DNA分子的分析中,有10,000对(一千)对碱基,确定细胞选择的数量为20%。在此DNA分子中我们会发现多少个浅色的封装?选择正确的选项。
单链DNA的化学结构几乎没有深入了解其作为遗传信息载体的生物学功能。然而,当詹姆斯·沃森(James Watson)和弗朗西斯·克里克(Francis Crick)在1953年表明DNA采用双链结构(复式)时,DNA复制的机理(复制)变得显而易见。双螺旋结构主要是从X射线纤维衍射数据(由Rosalind Franklin和Maurice Wilkins获得的)和Chargaff的规则中阐明的。Erwin Chargaff发现,DNA中的摩尔量始终等于胸腺嘧啶,而对于鸟嘌呤和胞嘧啶也是如此(即g的摩尔数= c)的摩尔数。Watson和Crick能够通过构建模型来解释这一点,以表明DNA的两条链由相反链的单个碱基之间的氢键组合在一起。嘌呤碱始终与嘧啶T和嘌呤G始终与嘧啶C配对(图9)。
被混合了。自然249:803-805 19。格里菲斯(Griffith)于1928年知道了DIV的细菌过渡实验,但任何人都无法将其确立为模型查询。Hershey and Chas问题室Nodel并不是任何人都可以想到的……而且,因为现在是时候在1935年至1944年发表论文的时候,使用这种实验模型的纯粹分离的conversion依原则的证明并不是被认为是Ji Geum的实验室状况。20。averree的情况下,异端的污染程度不到1%,但是诸如A. Mirsky之类的学者已经能够克服这一刺激室来克服这一点,也认为即使污染程度也可以足够有效。它没有被认可。但是,在喧嚣实验中,在手动火焰中污染的放射性S超过了这些数字,并且每个结果都不同。然而,这是一个证词,所有学者都确信后一种实验不会降低,这是一个决定性的实验,无法成为蛋白质的原因。范式已经改变。21。DIV的代表性特征包括R. allanklin,这是Chargaff和Chargaff和DNA议会的最佳实验,这导致了伊朗核心的投诉。22。1935年,当埃弗利(Averley)开始改变过渡时,做出了一个重要的生物学事件,该事件决定了答案的镶嵌病毒。它也是一种纯蛋白质...时间的病毒被用作与油电子产品非常一致的语言。DIV还知道,在P处是核酸的成分,是一种能量形式。更重要的是,阿伯里别无选择,只能仔细提出结果,因为这是我研究核酸和蛋白质复合物,称为染色质,是费勒大学的染色质。如果您发表了一篇论文,您将知道是否很难宣布相反的结果,但是如果您在实验室外发表了论文,那是不幸的。有关更多详细信息,Morangju分子生物学省3第3章(参考
詹姆斯·沃森(James Watson)和弗朗西斯·克里克(Francis Crick)在1953年4月25日发表在《自然》杂志上的一份开创性论文中提出了DNA结构的双螺旋模型。他们的模型基于Rosalind Franklin和Maurice Wilkins收集的X射线衍射数据,以及Chargaff关于DNA的基础组成的规则。Watson-Crick模型为DNA结构提供了全面而准确的解释,并揭示了其优雅且功能性的架构。在观察富兰克林的X射线衍射照片后,沃森和克里克应用了所有以前的知识,这些知识是在剑桥大学中使用金属棒和盘子进行物理组装的所有知识。由于Linus Pauling最近显示了蛋白质的α-螺旋结构,因此它帮助他们在1953年2月28日最终确定了DNA的结构(图12.12)。
12.2解锁DNA的秘密DNA分子必须以某种方式指定蛋白质的组装,蛋白质会调节细胞功能,而不会因细胞而变化。了解DNA的结构对于掌握基因的工作方式至关重要。DNA是一种由共价键连接为长链或链的核苷酸的核酸。核酸是最初在细胞核中发现的略微酸性分子。它们由形成长链的核苷酸组成。DNA的核苷酸由三个组成部分:脱氧核糖,磷酸基团和氮基。后者有四种类型:腺嘌呤(a),鸟嘌呤(G),胞嘧啶(C)和胸腺素(T)。这些基部从链条向侧面突出。可以按任何顺序排列碱的顺序,从而允许多种组合。科学家使用了多个线索来解决DNA的结构。富兰克林的X射线图案显示出一个X形图案显示出扭曲的链,表明两条链和一个角度,指示中心附近的氮基。Watson和Crick使用这些线索建立了三维模型,最终创建了双螺旋模型。双螺旋螺旋解释了夏尔加夫的基本配对规则以及两条线如何缠绕在一起。这个突破模型帮助科学家掌握了DNA的特性和功能。DNA的双螺旋结构由两条链组成,它们像螺旋楼梯一样互相扭曲。
在1946年对Chargaff and West进行了研究,该研究开放了细胞外囊泡(EV)生物学领域,1990年的几项研究表明,疾病状态中外泌体表达水平改变了。从那时起,对疾病治疗领域中外泌体的研究迅速增长(1-5)。例如,已证明免疫细胞起源的外泌体影响免疫系统的功能(6)。此外,随着外部研究技术的发展,研究人员有能力检测单个外泌体,宣布外泌体研究已经进入了个体外泌体时代(7,8)。外泌体,平均直径约为100纳米,是EV的子集(9)。 几乎所有类型的细胞都会释放外泌体,可以看作是细胞的常规生理活性(10)。 细胞是人体最基本的基础,它们的异常状态通常会导致疾病。 随着研究方法和技术的发展,研究人员发现,除了细胞外,外泌体在疾病的发作和进展中也起着至关重要的作用(9,11,12)。 外泌体通常以低免疫原性,高安全性,高组织穿透性为特征,并且几乎可以循环到所有体腔(13)。 此外,不同细胞分泌的外泌体具有不同的组织选择性(14)。 随着外部研究的加深,工程外泌体在疾病治疗中的巨大潜力,尤其是癌症的治疗。 但是,没有一个人外泌体,平均直径约为100纳米,是EV的子集(9)。几乎所有类型的细胞都会释放外泌体,可以看作是细胞的常规生理活性(10)。细胞是人体最基本的基础,它们的异常状态通常会导致疾病。随着研究方法和技术的发展,研究人员发现,除了细胞外,外泌体在疾病的发作和进展中也起着至关重要的作用(9,11,12)。外泌体通常以低免疫原性,高安全性,高组织穿透性为特征,并且几乎可以循环到所有体腔(13)。此外,不同细胞分泌的外泌体具有不同的组织选择性(14)。随着外部研究的加深,工程外泌体在疾病治疗中的巨大潜力,尤其是癌症的治疗。但是,没有一个人目前,工程外泌体主要用于通过增强靶向,调节基因表达,充当药物载体,改变肿瘤微环境和调节包容体等,来增强疾病的治疗作用。
现在是1968年首次出版的流行科学经典《双螺旋》,仍然与研究更高生物学和更高人类生物学的学生有关。它写得很好且易于阅读,使高年级学生可以访问它。对DNA结构的发现的个人描述也是当时的人格和社会和专业规范的人类兴趣故事,既是对DNA结构的生物学的描述。因此,它使读者可以深入了解DNA的科学和这项科学研究的完成方式。显然,自沃森(Watson)和克里克(Crick)时代以来,DNA的科学已经大大发展。史蒂夫·琼斯(Steve Jones)对此版本的有用介绍概述了我们对DNA自那时以来发生的DNA的进步。这很有用,因为在较高的生物学和较高的人类生物学课程中,DNA的生物学也已被更新,以考虑自沃森和克里克时代以来对DNA的理解的发展。学生在遵循双螺旋的科学方面应该没有难以找到困难。沃森(Div> Watson)记录了赫里菲斯(Griffiths)和艾弗里(Avery)的证据,以及赫尔希(Hershey)和蔡斯(Hershey and Chase)的噬菌体实验(以及他自己在噬菌体上的工作),表明DNA是可遗传的材料,Chargaff在基本对上的作品以及Wilkins和Franklin的X射线晶体学的作品,是将DNA双Helix结构的线索。Watson还描述了他的意识到DNA必须是RNA的模板,RNA必须是蛋白质合成的模板。这也是生物学教科书中使用的一种常见解释途径,描述了DNA的结构,并且是一种建议的案例研究方法,以提高生物学和更高的人类生物学。学生很可能会在1950年代找到英国科学界的文化有些奇怪!主要由公立学校受过教育的中产阶级男性统治,而主要的态度和价值观是在很大程度上。合作与竞争之间的紧张关系,智力势利和厌女症都是显而易见的。BBC 1987 Horizon电影人生故事(1988年获得了BAFTA最佳单戏奖),杰夫·戈德布鲁姆(Jeff Goldblum)饰演沃森(Watson)和蒂姆·皮格·史密斯(Tim Piggot-Smith),因为克里克(Crick)捕捉了《时代》和《科学》的戏剧性。尽管通常不可用,但值得跟踪副本。沃森在本书中对罗莎琳德·富兰克林(Rosalind Franklin)的严厉处理,在结语中有些改善是沃森(Watson)当时的同时代人的一个问题,并导致富兰克林(Franklin)成为女权主义的偶像。许多人认为,如果她居住,富兰克林本来可以与沃森,克里克和威尔金斯分享诺贝尔奖(诺贝尔奖没有死后奖励 - 您必须活着才能看到您的工作认可)。因此,她的故事也有充分的记录,例如在布伦达·马多克斯(Brenda Maddox)的传记罗莎琳德·富兰克林(Rosalind Franklin):DNA的黑暗女士[1]中。想要深入研究
DNA中的氮基碱包括腺嘌呤,鸟嘌呤和胞嘧啶,而RNA含有尿嘧啶而不是胸腺素。解旋启动DNA合成,而聚合酶是负责通过在生长链中添加核苷酸来复制DNA的主要酶。DNA的糖磷酸主链由磷酸二酯键一起保持。一个称为复制起源的特定序列是染色体上DNA合成的起点。DNA的双螺旋结构具有主要和次要凹槽,这对于其功能很重要。双螺旋的每个转弯都有这些凹槽,从而允许复制过程发生。在DNA复制过程中,氮基碱的正确配对对于维持遗传信息的完整性至关重要。此过程发生在细胞分裂之前,涉及DNA双螺旋的放松形成两个模板链。领先链是连续合成的,而滞后链则形成短片段,然后通过连接酶将其连接在一起。在复制位点形成Y形结构是过程中的重要一步。RNA或DNA的引物序列是DNA合成的模板,并且在复制完成后必须去除这些引物。参与DNA复制的键酶包括解旋酶,聚合酶和连接酶。旋转酶放松双螺旋,而聚合酶为生长链增添核苷酸。连接酶将滞后链的短片段连接在一起。连接5'和3'时,会形成磷酸酯主链。与DNA复制有关的一些重要术语包括前导链,滞后链,复制的起源和滑动夹具蛋白。DNA复制过程对于忠实地从一代细胞到下一个细胞的遗传信息传播至关重要。仅在RNA中发现的化合物被称为** uracil **,而** okazaki碎片**请参阅滞后链上的短段或片段。DNA的基本三维形状是A **双螺旋**结构,而RNA是单链,不稳定的,并且可以离开细胞核。基因由DNA组成,代表遗传的基本物理和功能单位。通过破坏弱氢键解解酶的酶称为**解旋酶**。平行但在相反方向的两个侧面称为**反平行**。嘧啶由单个碳环组成,而核苷酸由磷酸盐,糖和氮碱组成。DNA是双链,稳定的,并且保持在核内。根据夏尔加夫的统治,鸟嘌呤总是与胞嘧啶配对。核糖是RNA核苷酸中发现的糖,而脱氧核糖是DNA核苷酸中存在的5-碳糖。氢键将DNA的两条链组合在一起,** primase **是负责放下RNA底漆的酶。互补意味着一侧可以与另一侧配对或补充另一侧。由重复核苷酸制成的长聚合物称为DNA。五个氮基是腺嘌呤,鸟嘌呤,胸腺嘧啶,胞嘧啶和尿嘧啶。双螺旋的“主链”是磷酸骨架。** DNA聚合酶**是促催化DNA分子合成的酶中的一种酶。嘧啶衍生物包括三个氮基碱 - 尿嘧啶,胸腺嘧啶和胞嘧啶 - 它们是DNA和RNA的基础。复制涉及半守则复制,其中双螺旋分裂为两个不同的链。嘌呤分子由四个氮原子和六个碳原子组成。嘧啶由一个六元环和两个氮原子和四个碳原子组成。核苷酸是DNA和RNA的构件。** DNA解旋酶**是一种在DNA复制中起重要作用的酶,而氢键在解螺旋酶放松时会破裂。这是文本的重写版本:** DNA结构** DNA的基本构件是由重复核苷酸组成的长聚合物。这些氮碱分为两个主要群体:嘌呤(腺嘌呤,鸟嘌呤)和嘧啶(胸腺胺,胞嘧啶,尿嘧啶)。酶,例如DNA聚合酶,促进了DNA分子的合成。**复制过程**在半守保持复制期间,双螺旋分裂为两个单独的链。这些链充当新DNA合成的模板。该双螺旋的“骨干”由磷酸盐组组成。**核苷酸特征**嘌呤(例如腺嘌呤和鸟嘌呤)由一个六元环组成,带有四个氮原子和六个碳原子,而嘧啶(例如胸腺胺和细胞儿童)具有两个六氮环,具有两个六氮气,带有两个硝基原子和四个碳原子的环。核苷酸是DNA和RNA的基本单位。**涉及的酶** DNA解旋酶通过放开双螺旋在复制过程中起着至关重要的作用,这最终导致链分离。**氢键**作为解旋酶放松DNA链,核苷酸之间的氢键被损坏,从而使链分开。