在过去的三十年中,这些等级的机械性能几乎没有变化,但化学分析已经进行了调整以提高缺口韧性。此外,ABS 要求所有厚度的 CS 和 E 级以及 1.375 英寸以上的 D 级进行正火处理,以进一步提高缺口韧性。B、D 和 E 级需要在 0°F 和 -40°F 之间的温度下进行夏比试验。请注意,曾经常用的沸腾钢现在已被禁止,但 1/2 英寸以下的 A 级除外。
氧化物的钙热还原,103,107-8 钙热疗法,106 氧化钽的钙还原,105 碳脱氧,102 碳热疗法,101 铸件,如钛净成型技术,200-203,206;插图,201,202;表格,203 钛合金的夏比冲击试验,46,49;表,49 化学加工工业,钽在电解中的应用。111 氯碱工业 尺寸稳定阳极技术的商业化,3-4 盐水电解用石墨阳极技术的应用,4 铬,作为钛合金,137-38,145 冷变形,锆的应用,165 耐腐蚀性,ix 化学成分对高强度钛合金的影响,123-25 表面光洁度对高强度钛合金的影响,125-26 热机械对高强度钛合金的影响,125,130-143;插图,134,135,137,138;表格,132,133,136-140
在这些标准下,我们开展了一项探索性计划,以表征普通强度造船钢(即 ABS A、B、C、D、E 和 CS 级)的动态断裂韧性。试验材料(板材)从几个造船厂和钢厂随机获得,以表征当前炼钢产品的特性。断裂韧性趋势通过落锤试验(NOT,l-in)定义。DT 和标准夏比 V 型缺口试验,并将观察到的韧性特征与拟议的韧性标准进行比较。发现 ABS A、B 和 C 级非热处理板材的韧性不足以满足合理的断裂韧性要求。另一方面,发现 ABS C、D、E 和 CS 级正火板材表现出改善的韧性趋势,在大多数情况下可以满足拟议的要求。
应变和温度历史对结构钢延展性和脆性断裂起始的重要影响已在几篇早期论文中得到证实和讨论。““结果表明,在中心静态拉伸试验中,预压缺口低碳钢片将产生细小裂纹或在平均初始屈服点 10% 的应力下断裂。如果没有事先进行压缩预应变,这种钢与实验室中测试的所有其他低碳钢一样,在净截面普遍屈服之前不会断裂,尽管有最严重的缺口和低于夏比转变的温度。已经研究了冷压缩或半压缩引起的拉伸延展性的降低,包括轴向压缩钢筋 '-, ' '-l' 和反向弯曲板 ''-20 和 ~ar~:-l。 ~ 这些测试的显著结果是
氧化物的钙热还原,103,107-8 钙热疗法,106 氧化钽的钙还原,105 碳脱氧,102 碳热疗法,101 铸件,如钛净成型技术,200-203,206;插图,201,202;表格,203 钛合金的夏比冲击试验,46,49;表,49 化学加工工业,钽在电解中的应用。111 氯碱工业 尺寸稳定阳极技术的商业化,3-4 盐水电解用石墨阳极技术的应用,4 铬,作为钛合金,137-38,145 冷变形,锆的应用,165 耐腐蚀性,ix 化学成分对高强度钛合金的影响,123-25 表面光洁度对高强度钛合金的影响,125-26 热机械对高强度钛合金的影响,125,130-143;插图,134,135,137,138;表格,132,133,136-140
1991 年,在 IMAX 影片拍摄泰坦尼克号沉船事件期间,法国海洋研究所潜水器鹦鹉螺号带回了第一块从泰坦尼克号沉船现场打捞出的船体材料。这块材料被大西洋海事博物馆获得,博物馆委托位于新斯科舍省哈利法克斯的大西洋国防研究机构 (DREA) 和位于渥太华的 CANMET 的研究人员测试钢材的机械性能 [2]。DREA 的 Ken KarisAllen 和 Jim Matthews 进行了夏比冲击试验,他们发现钢材在冰盐水温度下 100% 脆性断裂。这些测试的观察结果和随后的有限分析可以在《大众力学》上发表的一篇文章中找到 [3]。这引起了广泛的猜测,即船体钢在冰水中的脆性可能是导致巨轮沉没的主要因素。人们认为,尽管与冰山的撞击很小,但足以震碎船头脆弱的船体板材,导致船舶迅速进水。
1991 年,在 IMAX 影片拍摄泰坦尼克号沉船事件期间,法国海洋研究所潜水器 Nautile 带回了第一块从泰坦尼克号沉船现场打捞出的船体材料。这块材料后来被大西洋海事博物馆获得,博物馆委托位于新斯科舍省哈利法克斯的大西洋国防研究机构 (DREA) 和位于渥太华的 CANMET 的研究人员测试钢材的机械性能 [2]。DREA 的 Ken KarisAllen 和 Jim Matthews 进行了夏比冲击试验,他们发现钢材在冰盐水温度下 100% 脆性断裂。这些测试的观察结果和随后的有限分析可在《大众力学》上发表的一篇文章中找到 [3]。这引起了广泛猜测,船体钢在冰水中的脆性可能是导致巨轮沉没的主要因素。人们认为,虽然与冰山的撞击很小,但足以震碎船头脆弱的船体板材,导致船舶迅速进水。
船舶结构委员会赞助开发了一个数据库,该数据库涵盖了包含定量韧性数据的数据源,并根据这些数据开发了一个记录完备的计算机化数据库,供广大工程师和材料科学家使用。其中包括来自材料供应商的原始数据以及来自各种组织发表的论文和技术报告的数据。主要关注拉伸强度、夏比 V 型缺口棒冲击值、断裂韧性 (JIc)、NDTT 和 DT 能量;如果同一批次的材料有其他韧性参数,则也包括这些参数。这些材料包括代表赞助机构的项目技术委员会确定的钢材。这个数据库的原型版本包含了大约 1000 条记录,代表了 11 种钢材的大约 10,000 次测试。现在已有标准程序可以有效地添加其他合金和性能的数据。
焊接是船舶制造业不可缺少的制造工艺。激烈的竞争往往需要一种经济高效、可靠的焊接方法。本研究研究了埋弧焊 (SAW)、金属活性气体 (MAG) 焊和等离子弧焊 (PAW) 制造的 ASTM A131 (A 级) 钢接头的可焊性、微观结构和一些机械性能。通过光学显微镜检查了焊缝的微观结构。通过显微硬度测量、拉伸和冲击试验确定了接头的机械性能。结果表明,接头的抗拉强度高达 462 MPa。断裂的位置总是与母材相邻。焊缝金属的夏比冲击功达到 72.5 J,比母材的夏比冲击功 57.7 J 高 25%。PAW 方法可获得 221 HV 的较高硬度,而母材的硬度为 179 HV。关键词:A 级钢;焊接;拉伸失效;硬度