文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
废水和活细胞中Cr(VI)荧光感应的材料,无机化学,
本手稿讨论了新的三合会输入双输出(TIDO)高增益DC-DC转换器首选用于微电网应用的有效分析。Tido Converter允许在输入处使用多个可再生能源发电机,并提供具有不同电压级别的双输出端口。Tido转换器具有高压增益,具有双向设施的多个端口,电压降低,当前应力和更好的工作效率。通过稳态分析,相关电压方程和波形详细介绍了所提出的转换器的电路配置。有效分析包括组件应力分析,损失分析和TIDO转换器的比较分析。使用PSIM软件模拟了建议的高增益TIDO DC-DC转换器。结果通过具有高晶粒输出电压的组件来验证各种组件和电流的电压,以有效的稳态工作性能。最后,有效地分析了15.45 kW,1000 V〜500 V 〜500 V DC-DC转换器中的中电压DC(MVDC)分布或混合电动汽车应用。
来自英国剑桥的 Krishna Chatterjee 教授是 2025 年欧洲激素奖章获得者。他将在哥本哈根举行的 ESPE 和 ESE 联合大会上发表获奖演讲。请继续阅读,了解有关他在内分泌学领域的职业生涯、他对未来内分泌学家的建议以及您可以期待在大会上听到他谈论的内容的更多信息。 请告诉我们您目前的职位 我在英国剑桥大学代谢科学研究所工作。我的研究涵盖基础临床界面,并转化为针对罕见和不寻常的甲状腺疾病的诊断服务。此外,我很荣幸能够指导剑桥临床研究中心和针对健康专业人员的博士课程。 您在内分泌学方面走上了怎样的职业道路? 我毕业于剑桥大学,在牛津大学完成临床培训。我首先在伦敦汉默史密斯医院接受 Steve Bloom 的内分泌学培训,然后在美国马萨诸塞州波士顿的麻省总医院甲状腺科与 Larry Jameson 一起进行研究。 1990 年,我回到剑桥临床医学院,由 Keith Peters 领导。1998 年,我被任命为内分泌学教授。我们的研究一直得到 Wellcome 的支持,最近又得到了英国国立卫生研究院的支持。在 2025 年 ESE 和 ESPE 联合大会的颁奖演讲中,您将讨论什么?我将介绍我们团队在甲状腺激素作用领域的显著贡献。我们定义了一种多系统疾病,通常在儿童时期出现,原因是 SECISBP2 发生突变,该基因控制含硒半胱氨酸的蛋白质的合成。这种综合征与甲状腺激素代谢紊乱和表型(如肌营养不良症、无精子症)有关,这是由于组织特异性硒蛋白缺乏引起的,以及由于缺乏抗氧化硒酶而导致的特征(如光敏感性、进行性听力损失、主动脉瘤)。独特的是,这种疾病说明了氧化应激对人类的影响。
1。多壁碳纳米管对AL-12%Si合金,Anuruddha Majumder,Dipankar Chatterjee,Sambhunath Nandy的固化过程的影响(Today Communications,Accpeted,2023年)。2。在共晶的Al-Si液体中的主要硅沉淀上进行固体转化,Anuruddha Majumder,Dipankar Chatterjee,Sambhunath Nandy(材料科学与工程学中的建模和模拟,第1卷31,pp。075004,2023)。3。混合对流流经过反向双线,例如旋转的侧面圆柱体,NVV Krishna Chaitanya,Dipankar Chatterjee(热传递工程,被接受,2023年)。4。交叉热浮力在低雷诺数下并排圆柱体周围的流动过渡,Krishna Chaitanya NVV,Dipankar Chatterjee,Bittagopal Mondal(热分析和热量分析杂志,卷,148,pp。2933,2023)。5。横向磁场对抑制虚张声器物体上的纳米流体流量不稳定性的功效571,pp。170582,2023)。
摘要 以数据为中心的革命通常庆祝商业分析和人工智能在挖掘公司潜力和成功方面的普及。然而,关于人工智能集成商业分析 (AI-BA) 的意外后果如何影响公司整体竞争优势的研究还很缺乏。在此背景下,本研究旨在确定 AI-BA 不透明度、次优业务决策和感知风险等因素如何导致公司的运营效率低下和竞争劣势。借鉴资源基础观、动态能力观和权变理论,提出的研究模型捕捉了 AI-BA 不透明度对公司风险环境和负面绩效的组成部分和影响。数据来自印度不同规模组织的各个服务部门的 355 名运营、中层和高级经理。结果表明,缺乏治理、数据质量差以及关键员工培训效率低下导致 AI-BA 不透明。随后,它会触发次优业务决策和更高的感知风险,从而导致运营效率低下。研究结果表明,运营效率低下显著导致销售增长为负和员工不满,从而导致公司处于竞争劣势。研究结果还强调了应急计划在法则链中的显著调节作用。
乳腺癌是女性诊断为癌症相关死亡的主要原因[1-3]。三阴性乳腺癌(TNBC)是最激进的乳腺癌类型,这是由于复发病例的高百分比,转移的发病率很高,导致生存率较低。TNBC缺乏靶向受体,雌激素,孕酮和人表皮生长因子受体2(HER -2)的表达[4-7]。与其他乳腺癌亚型相比,TNBC的增殖率更高[6]。TNBC更有可能影响年轻妇女,占每年诊断的乳腺癌病例的10-20%[2,8]。治疗TNBC面临的主要临床挑战是缺乏已知的特异性治疗靶标,导致攻击TNBC的选择有限,从而导致预后不良。TNBC中的高异质性导致存在几个分子特征,这是其成功有效治疗的重要障碍[5-8]。因此,将常规的化学治疗剂和放射疗法保留为TNBC治疗的主要支柱。即使是临床推荐的药物的化学疗法也表现出不足的反应,高毒性和耐药性的发展[9,10]。这些挑战鼓励了大量研究改善当前可用的干预措施,并确定针对TNBC的有效治疗策略。
(2020 年 7 月 17 日发布)1. 2019 年 11 月 18 日,PJM 工业客户联盟(PJM ICC)与弗吉尼亚公平电价委员会(统称客户权益倡导者)和微软公司(Microsoft)联合请求重新审理委员会在上述程序中于 2019 年 10 月 17 日作出的命令 1,该命令接受了弗吉尼亚电力公司(经营名称为 Dominion Energy Virginia)(Dominion)提交的提议,即根据《联邦电力法》(FPA)第 205 条修改 PJM Interconnection LLC(PJM)开放接入输电关税(关税)。2 同步峰值命令建立了一种新的 12 个月同步峰值 (12-CP) 分配方法,用于确定 Dominion 区域网络客户的网络服务峰值负荷贡献,3 该命令自 2020 年 1 月 1 日起生效,如要求。
(2020 年 5 月 29 日发布)1. 2020 年 5 月 1 日,北方边境管道公司(北方边境)提交了一份修订后的关税记录 1,以修改其关税一般条款和条件(GT&C)第 6.5 节,为北方边境管道系统的天然气设立每立方英尺 1100 Btu 的天然气质量安全港限值。北方边境进一步提议修订 GT&C 第 6.5 节,以建立:(1)在条件允许的情况下,北方边境将在其网站上公布其系统指定点、指定段或其他指定位置的天然气接收量超过 1100 Btu 的上限热含量限值;(2)投标方可以配对和混合天然气接收量以满足 Btu 上限的流程,北方边境声称这将使其标准与与北方边境系统互连的大多数下游系统的热值标准保持一致。如下所述,我们接受并暂停已提交的关税记录,该记录自 2020 年 11 月 1 日起生效,但须经退款并根据本命令确定技术会议的结果。
杜克公司还解释说,2013 年更改的拟议费率表中的折旧率与使用其之前的折旧率相比,减少了与流经传输公式费率的工厂在用账户相关的年度折旧费用。据杜克公司称,使用 2012 年年末工厂余额,使用印第安纳州委员会批准的 2013 年 1 月 1 日生效的折旧率,与使用其之前的折旧率相比,年度折旧费用将减少约 428,000 美元。15 杜克公司辩称,尽管缺陷信要求杜克公司证明其从 2014 年至今的费率年度 ATRR 的影响,但无法可靠地进行比较,因为传输费率账户不再根据已过期的费率折旧。16