具有增强词语表示的编码器架构,载于 Springer Applied Intelligence,2022 年。4. S. Sarkar、DP Mukherjee 和 A. Chakrabarti,“强化学习用于足球传球检测和控球统计数据生成”,载于 IEEE Transactions on Cognitive and Developmental Systems,2022 年,doi:10.1109/TCDS.2022.3194103。 5. M. Rakshit、S. Bhattacharjee、G. Garai、A Chakrabarti,“正交频分复用系统中基于音调预留的峰值与平均功率比降低技术的新型差分进化算法”,Swarm and Evolutionary Computation,爱思唯尔,第 72 卷,2022 年 7 月 6. A. Saha、R. Majumdar、D. Saha、A. Chakrabarti 和 S. Sur-Kolay,“具有 n-qudit Toffoli 门高级分解的 d-ary Grover 算法的渐近改进电路”,Phys. Rev. A,第 72 卷。 105,062453 – 2022 年 6 月 28 日发布。7. AK Das、B Chakraborty、S Goswami、A Chakrabarti,“一种基于模糊集的有效特征选择方法”,模糊集与系统,爱思唯尔,印刷中,2022 年。8. T. Chatterjee、A. Das、SI Mohtashim、A. Saha、A. Chakrabarti,“Qurzon:基于分而治之的分布式量子系统量子编译器原型”,Springer Nature Computer. Science,第 3 卷,323,2022 年。9. S. Basu、A. Saha、A. Chakrabarti 和 S. Sur-Kolay,“i-QER:一种减少量子误差的智能方法”,ACM Transactions on Quantum Computing,已接受(2022 年 5 月)。
xinxue li 1,#,2,∗,∗,2,Maric Foot Hardahl 14,John Haguney 15,Alexander Housing A. Van A. Klauw Ran 16,Jothan Kowk,21,Patrick Moore 22,Mehmoud Mugal 6,Oama F Muppdi 5,Oama F Muppdi 5,Holloladay 23,Orod。 26,Daniel Pan 26,Thome Rampling 18,Rabben Saik 2,Stephen说2,Soena Search; Supassa的Pypse 9,Emma C Tomson 15,29,Chard 23,Chart C. Red 2,Susa,Jonathan S Dneyen-Van-Tem 32,Cornelius Cornelius 4,#Date Dnape 1,5,Saul N Faust 2,Saul 2,Saul 3,Saul 3,Saul 3,Saul 3,Saul 3,
∗ We thank Johannes H¨orner, Mehmet Ekmek¸ci, Kalyan Chatterjee, H¨ulya Eraslan, Paola Manzini, Utku ¨Unver, Tayfun S¨onmez, Rakesh Vohra, George Mailath, Vijay Krishna, Herv´e Moulin, Larry Ausubel, Michael Ostrovsky, Ed Green, Ron Siegel, Luca Rigotti, Sevgi Y¨uksel, Alexey Kushnir, Alex Teytelboym, William Thomson, Peter Troyan, Charlie Holt, Ruben Juarez, Francis Bloch, Leeat Yariv, Laura Doval, Piotr Dworczak, Nicholas Yannelis, and all seminar participants at Stanford (NBER Market Design ),纽约大学,赖斯,马里兰州,波士顿大学,匹兹堡大学,卡内基·梅隆,宾夕法尼亚州立大学(PETCO),弗吉尼亚州,弗吉尼亚州,达勒姆,悉尼,悉尼,悉尼大学,比尔肯特大学,比尔肯特大学,伊特,伊特,巴黎·多台恩,约克,达尔霍伊斯,苏塞克斯和许多有用的讨论和建议。Sel¸cuk ¨ Ozyurt especially thanks M. Remzi Sanver, David Pearce, Eric Maskin, Harvard Uni- versity Department of Economics, Tepper School of Business, and Sabancı University Economics Group for their mentoring, support and hospitality during this project, and the European Commission for the funding from Euro- pean Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 659780。†(通讯作者)悉尼大学经济学学院(onur.kesten@sydney.edu.au)•约克大学,经济学系(ozyurt@yorku.ca)1参见,例如,请参见Ali(2018),以进行最近的调解改革。
1。ShriPK Pujari,主席CERC2。Shri是JHA,CERC3。Shriun Behera,主席4。ArbindPrasad博士,主席Jserc Jserc 5.Shri Preman dinaraj,主席KSerc,主席KSerc 6。 Chandra Shekhar,主席10。ShriAk Bakshi,前CERC11。ShriPJ Thakkar,GERC成员12。ShriRK Choudhary,BERC成员13。ShriDurgadas Goswami,Wberc14。ShriMukesh Khull shri khull shri hm manjuna shri shera,成员APERC18。ShriSc Shrivastava,酋长(ENGG)CERC19。SK博士1. Shri Sunil Agarwal,首席 (RA) CERC 2. Shri HH Sharan PGCIL 3. Dr. Sunita Chohan PGCIL 4. Shri Anish Mandal Deloitte/GTG-RISE 5. Shri Amit Goenka Deloitte 6. Shri Nirmal Shaju Deloitte
1 简介 在多智能体系统的形式化研究中,推理智能体和智能体群体的战略能力是一个备受关注的话题。为此,人们引入了许多逻辑,例如博弈逻辑 [Pauly 和 Parikh,2003]、STIT [Herzig 和 Lorini,2010] 和 ATL [Alur 等,2002]。在这些逻辑中,策略逻辑 (SL) [Chatterjee 等,2010;Mogavero 等,2014] 近年来非常成功,因为它将自然的语法与高表达能力相结合,使其能够轻松表达复杂的博弈论概念,例如纳什均衡的存在。它的模型检查问题是可判定的,模型检查算法通常可用于合成满足给定规范的策略。由于不完全信息是多智能体系统的一个重要方面,SL 最近得到了扩展,以考虑不完全信息 [Berthon et al. , 2021] 并允许进行认识论推理 [Maubert and Murano, 2018; Belardinelli et al. , 2020]。如 [Maubert and Murano, 2018] 所述,在战略背景下定义知识的语义涉及一些微妙之处,其影响深远,但往往被忽视。文献中存在两种语义,大多数作品都采用其中一种而没有提及。一个对应于不知道彼此策略的智能体(在 [Maubert and Murano, 2018] 中称为无知语义),而另一个对应于知道每个人策略的智能体(知情语义)。前者用于所有现有的 ATL 和 SL 的认识论扩展(例如,[van der Hoek and Wooldridge, 2003; Jamroga and van der Hoek, 2004; Guelev et al. , 2011; Belardinelli et al. , 2017b]),
本货运计划手册由 Cambridge Systematics, Inc. 为美国联邦公路管理局 (FHWA) 编制,合同编号为 DTFH61-93-C-00075,由 COMSIS Corporation 编制,合同编号为 DTFH61-93-C-00216。研究团队成员包括 Cambridge Systematics Inc. 的 Harry S. Cohen 博士、Roemer M. Alfelor 博士和 Krista L. Rhoades;威斯康星大学密尔沃基分校的 Alan J. Horowitz 教授、Suparna Chatterjee 和 Michael McAdams 博士;以及 COMSIS 公司的 Deborah W. Matherly 和 Art Sosslau。我们还要感谢以下人员的贡献:威斯康星州交通部 (WisDOT) 的 Randall E. Wade、Douglas F. Dalton、John Hartz、Donald R. Uelman 和 Dwan Krahn;威斯康星州格林贝 Services Plus 总裁 Michael Schumacher;劳伦斯/道格拉斯县大都会规划办公室的 Fred Sherman;堪萨斯州交通部 (KDOT) 的 Richard Miller;威斯康星州梅纳沙市的 Greg Keil;威斯康星州东中部区域规划委员会的 Ken Theine 和 Walt Raith;威斯康星州布朗县规划委员会的 Chris Knight 和 Pat M. Vaile;以及威斯康星州福克斯谷地区的众多卡车运输和仓储公司。非常感谢 Alan Pisarski 审查货运规划数据源,感谢美国卡车运输协会和运输统计局 (BTS) 大量使用他们的材料,以及感谢所有参与调查的大都会规划组织 (MPO) 和其他规划机构。最后,我们非常感谢联邦公路管理局的 Dane Ismart 和 Monica Francois 在编写本手册时为我们提供的技术指导。
本货运规划手册由 Cambridge Systematics, Inc. 为联邦公路管理局 (FHWA) 编制,合同编号为DTFH61-93-C-00075,合同编号为DTFH61-93-C-00216,由 COMSIS Corporation 编制。研究团队成员包括 Cambridge Systematics Inc. 的 Harry S. Cohen 博士、Roemer M. Alfelor 博士和 Krista L. Rhoades;密尔沃基威斯康星大学的 Alan J. Horowitz 教授、Suparna Chatterjee 和 Michael McAdams 博士;以及 COMSIS Corporation 的 Deborah W. Matherly 和 Art Sosslau。我们还要感谢以下人员的贡献:威斯康星州交通部 (WisDOT) 的 Randall E. Wade、Douglas F. Dalton、John Hartz、Donald R. Uelman 和 Dwan Krahn;威斯康星州格林贝 Services Plus 总裁 Michael Schumacher;劳伦斯/道格拉斯县大都会规划办公室的 Fred Sherman;堪萨斯州交通部 (KDOT) 的 Richard Miller;威斯康星州梅纳沙市的 Greg Keil;威斯康星州东中部区域规划委员会的 Ken Theine 和 Walt Raith;威斯康星州布朗县规划委员会的 Chris Knight 和 Pat M. Vaile;以及威斯康星州福克斯谷地区的众多货运和仓储公司。非常感谢 Alan Pisarski 审查货运规划数据源,感谢美国卡车运输协会和运输统计局 (BTS) 广泛使用他们的材料,以及感谢所有大都市规划组织 (MPO) 和其他参与调查的规划机构。最后,我们非常感谢联邦公路管理局的 Dane Ismart 和 Monica Francois 为我们编写本手册提供技术指导。
4. Avilla E、Guarino V、Visciano C 等。甲状腺癌中 TYRO3/AXL 酪氨酸激酶受体的激活。Cancer Res 2011;71(5):1792-1804。doi:10.1158/0008-5472.can-10-2186 5. Brose MS、Schlumbeger M、Jeffers M、Kappeler C、Meinhardt G、Pena CEA。分化型甲状腺癌患者的生物标志物分析及其与临床结果的关联:索拉非尼 III 期 DECISION 试验的亚组分析。Clin Cancer Res。2019;25(24):7370-7380。 doi:10.1158/1078‐0432.ccr‐18‐3439 6. Collina F、La Sala L、Liotti F 等人。AXL 是放射性碘难治性甲状腺癌的一种新型预测因素和治疗靶点。癌症(巴塞尔)。2019;11(6):785。doi:10.3390/cancers11060785 7. Salvatore D、Santoro M、Schlumberger M。RET 基因在甲状腺癌中的重要性及其治疗意义。自然内分泌学评论。2021;17(5):296-306。doi:10.1038/s41574-021-00470-9 8. Brose MS、Robinson B、Sherman SI 等人。卡博替尼治疗放射性碘难治性分化型甲状腺癌 (COSMIC‐311):一项随机、双盲、安慰剂对照的 3 期试验。Lancet Oncol 2021;22(8):1126‐1138。doi:10.1016/s1470‐2045(21)00332‐6 9. Cabometyx (卡博替尼)。包装说明书。Exelixis, Inc. 访问日期:2022 年 4 月 26 日。https://www.cabometyxhcp.com/sites/default/files/2021‐03/prescribing‐information.pdf 10. Cabometyx:EPAR - 药物概述。欧洲药品管理局。访问日期:2022 年 8 月 23 日。https://www.ema.europa.eu/en/documents/product‐information/cabometyx‐epar‐product‐informati on_en.pdf 11. Brilli L、Dalmiglio C、Pilli T 等人。使用 TKI 作为晚期甲状腺癌挽救疗法改善总体生存率:基于单中心经验的真实数据。J Clin Med。2021;10(3):384。doi:10.3390/jcm10030384 12. Schlumberger M、Leboulleux S。分化型甲状腺癌患者的现行实践。Nat Rev Endocrinol。2021;17(3):176-188。doi:10.1038/s41574-020-00448-z 13. 美国国家综合癌症网络。 NCCN 肿瘤学临床实践指南:甲状腺癌第 2 版;2020 年。访问日期:2021 年 1 月 21 日。https://www.nccn.org/ 14. Dacosta Byfield SA、Adejoro O、Copher R、Chatterjee D、Joshi PR、Worden FP。美国开始接受小分子激酶抑制剂治疗的甲状腺癌患者的真实世界治疗模式。Adv Ther。2019;36(4):896-915。doi:10.1007/s12325-019-0890-6 15. Kish JK、Chatterjee D、Wan Y、Yu HT、Liassou D、Feinberg BA。仑伐替尼和后续治疗治疗放射性碘难治性分化型甲状腺癌:美国临床有效性的真实世界研究。 Adv Ther . 2020;37(6):2841-2852. doi:10.1007/s12325-020-01362-6 16. Cabanillas ME、de Souza JA、Geyer S 等。卡博替尼作为酪氨酸激酶抑制剂难治性分化型甲状腺癌患者的挽救疗法:一项多中心 II 期国际甲状腺肿瘤学组试验的结果。J Clin Oncol . 2017;35(29): 3315-3321. doi:10.1200/jco.2017.73。0226
5 TS Böscke、J Müller、D Bräuhaus、U Schröder 和 U Böttger,《应用物理快报》99 (10), 102903 (2011)。 6 Uwe Schroeder、S Mueller、Johannes Mueller、Ekatarina Yurchuk、D Martin、Christoph Adelmann、Till Schloesser、Ralf van Bentum 和 Thomas Mikolajick,ECS 固体科学与技术杂志 2 (4),N69 (2013)。 7 H Alex Hsain、Younghwan Lee、Gregory Parsons 和 Jacob L Jones,《应用物理快报》116 (19)、192901 (2020)。 8 Johannes Muller、Tim S Boscke、Uwe Schroder、Stefan Mueller、Dennis Brauhaus、Ulrich Bottger、Lothar Frey 和 Thomas Mikolajick,《纳米快报》12 (8),4318 (2012)。9 Yuh-Chen Lin、Felicia McGuire 和 Aaron D Franklin,《真空科学与技术 B 期刊》,《纳米技术和微电子学:材料、加工、测量和现象》36 (1),011204 (2018)。10 Justin C Wong 和 Sayeef Salahuddin,《IEEE 会议纪要》107 (1),49 (2018)。 11 C Zacharaki、P Tsipas、S Chaitoglou、EK Evangelou、CM Istrate、L Pintilie 和 A Dimoulas,《应用物理快报》116 (18), 182904 (2020)。 12 Zoran Krivokapic、U Rana、R Galatage、A Razavieh、A Aziz、J Liu、J Shi、HJ Kim、R Sporer 和 C Serrao,在 2017 年 IEEE 国际电子器件会议 (IEDM) 上发表,2017 年(未发表)。 13 Shen-Yang Lee、Han-Wei Chen、Chiuan-Huei Shen、Po-Yi Kuo、Chun-Chih Chung、Yu-En Huang、Hsin-Yu Chen 和 Tien-Sheng Chao,IEEE 电子器件快报 40 (11), 1708 (2019)。 14 Sujay B Desai、Surabhi R Madhvapathy、Angada B Sachid、Juan Pablo Llinas、Qingxiao Wang、Geun Ho Ahn、Gregory Pitner、Moon J Kim、Jeffrey Bokor 和 Chenming Hu,Science 354 (6308), 99 (2016)。15 Amirhasan Nourbakhsh、Ahmad Zubair、Redwan N Sajjad、Amir Tavakkoli KG、Wei Chen、Shiang Fang、Xi Ling、Jing Kong、Mildred S Dresselhaus 和 Efthimios Kaxiras,Nano letters 16 (12), 7798 (2016)。16 Felicia A McGuire、Zhihui Cheng、Katherine Price 和 Aaron D Franklin,Applied Physics Letters 109 (9), 093101 (2016)。 17 Felicia A McGuire、Yuh-Chen Lin、Katherine Price、G Bruce Rayner、Sourabh Khandelwal、Sayeef Salahuddin 和 Aaron D Franklin,《Nano Letters》17 (8),4801 (2017)。18 Yuh-Chen Lin、Felicia McGuire、Steven Noyce、Nicholas Williams、Zhihui Cheng、Joseph Andrews 和 Aaron D Franklin,《IEEE 电子设备学会杂志》7,645 (2019)。19 Mengwei Si、Chun-Jung Su、Chunsheng Jiang、Nathan J Conrad、Hong Zhou、Kerry D Maize、Gang Qiu、Chien-Ting Wu、Ali Shakouri 和 Muhammad A Alam,《自然纳米技术》13 (1),24 (2018)。 20 Amirhasan Nourbakhsh、Ahmad Zubair、Sameer Joglekar、Mildred Dresselhaus 和 Tomás Palacios,纳米尺度 9 (18), 6122 (2017)。 21 Girish Pahwa、Amit Agarwal 和 Yogesh Singh Chauhan,IEEE Transactions on Electron Devices 65 (11), 5130 (2018)。 22 Daewoong Kwon、Korok Chatterjee、Ava J Tan、Ajay K Yadav、Hong Zhou、Angada B Sachid、Roberto Dos Reis、Chenming Hu 和 Sayeef Salahuddin,IEEE 电子设备快报 39 (2)、300 (2017)。 23 Daewoong Kwon、Suraj Cheema、Nirmaan Shanker、Korok Chatterjee、Yu-Hung Liao、Ava J Tan、Chenming Hu 和 Sayeef Salahuddin,IEEE Electron Device Letters 40(6),993 (2019)。 24 Junichi Hattori、Koichi Fukuda、Tsutomu Ikegami、Hiroyuki Ota、Shinji Migita、Hidehiro Asai 和 Akira Toriumi,《日本应用物理学杂志》57(4S),04FD07 (2018)。
原始文章对基于Tele的监督进行为期8周的可行性研究,以对上肢运动性能和功能能力的剧本练习,Subhasish Chatterjee。Abstrac t Background Telerehabilitation,使偏远地区的患者更容易获得康复,并且在运输挑战方面已被广泛实施,以恢复中风。随着通信技术的发展,Telerehabilitation正在成为一个更可行的选择。仍然未知,但是,这种分娩策略在中风患者的康复方面有多成功。在此前瞻性,单组,治疗性试验中的材料和方法,根据选择标准招募了12例患者。在基线签署了签署的患者同意书后,对患者进行了身体评估,并熟悉患者。患者通过现场会议,每周3天接受了基于电视的监督,每周3天,每周3天进行30分钟的监督。在切换任务之前,有30秒的休息时间。分别在基线,第4周和8周干预的基线时采取了结果指标,FMA UE和中套。计算描述性统计数据以获取基线时的人口统计信息和结果度量。为了评估数据的正态性,采用了Shapiro-Wilk测试。由于发现数据是正态分布的,因此进行了重复测量ANOVA和事后分析,以评估小组内基线,第4周和第8周的数据。Bonferroni校正用于解决多个比较。p值小于0.05被认为表明统计学上的显着差异。结果每个结果度量都表明有很大的改善(p <0.05)。根据组内分析,在FMA UE和Mesupes(p <0.001)中观察到了明显的区别。结论基于Tele的以任务为导向的练习有效地改善了中风患者的上肢运动性能和功能能力。