S.简短列出的候选人资格清单1。phule dutta baburao符合条件2。Surya Pratap Singh合格3。aarti kushwaha符合条件4。akhtar parwez符合条件5。vaibhav kumar tamrakar符合条件6。Manogat Tatkare合格7。Pushpendra Singh博士合格8.Ravikumar Lunavath符合条件9。suman kumar射线合格10。varsha jha合格11。kavyanjali sharma符合资格12。Anjaneyulu Mandari符合条件13。Ramakanta Rana符合条件14。MD Gulam Jilani合格15。uttaran bhattacharjee符合条件16。Deepak Krishnan合格17。santosh kumar符合条件18。Archi Ghosh符合条件19。Vipul Chaudhary博士符合条件20。Maumita Saha合格21。yashwant kumar ratre符合条件22。ritu kumari符合条件23。Anjali Devi Athanerey符合条件24。jayanthi bisai符合条件25。L. Shivlata博士合格26。Eswararao Tatta合格27。Chinmayee Bar Routararay合格28。sweta negi符合条件29。adasrh kumar shukla临时符合条件30。Garima Singh临时符合条件31。babita kanoje临时符合条件32。Shivani Jha临时符合条件33。Harjeet Kaur临时符合条件34。Dharmsheel Shrivastav临时符合条件35。Rajan Kumar Mishra临时符合资格
iv。参考文献[1] A.K.Srivastava,Shyam Singh&R。A. Marathe(2002)有机柑橘:土壤肥力和植物营养,《可持续农业杂志》,19:3,5-29。[2] Anil Kumar,C.H。Bhanu Prakash,Navjot Singh Brar和Balwinder Kumar。Vermicompost在不同农作物系统中的可持续作物生产和土壤健康改善的潜力。int。J.Curr。 微生物。 应用。 SCI(2018)7(10):1042-1055。 [3] Arsaln,M.,S。Sarwar,R。Latif,J.N。 Chauhdary,M。Yousra和S. Ahmad。 2020。 ver虫和微生物接种剂对雨养雨天条件下小麦的产量,土壤肥力和经济学的影响。 巴基斯坦农业研究杂志,33(4):858-865。 [4] D.R. Chaudhary,S.C。Bhandari•和L.M. Shukla。 Vermicompost在可持续农业中的作用 - 评论。 Arigric。 修订版,25(1):29-39,2004。 [5] Virendra Kumar Singh博士。 ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。 国际工程和应用科学高级研究杂志。 卷。 10。 编号 5。 2021年5月。 [6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。J.Curr。微生物。应用。SCI(2018)7(10):1042-1055。 [3] Arsaln,M.,S。Sarwar,R。Latif,J.N。 Chauhdary,M。Yousra和S. Ahmad。 2020。 ver虫和微生物接种剂对雨养雨天条件下小麦的产量,土壤肥力和经济学的影响。 巴基斯坦农业研究杂志,33(4):858-865。 [4] D.R. Chaudhary,S.C。Bhandari•和L.M. Shukla。 Vermicompost在可持续农业中的作用 - 评论。 Arigric。 修订版,25(1):29-39,2004。 [5] Virendra Kumar Singh博士。 ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。 国际工程和应用科学高级研究杂志。 卷。 10。 编号 5。 2021年5月。 [6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。SCI(2018)7(10):1042-1055。[3] Arsaln,M.,S。Sarwar,R。Latif,J.N。Chauhdary,M。Yousra和S. Ahmad。2020。ver虫和微生物接种剂对雨养雨天条件下小麦的产量,土壤肥力和经济学的影响。巴基斯坦农业研究杂志,33(4):858-865。 [4] D.R. Chaudhary,S.C。Bhandari•和L.M. Shukla。 Vermicompost在可持续农业中的作用 - 评论。 Arigric。 修订版,25(1):29-39,2004。 [5] Virendra Kumar Singh博士。 ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。 国际工程和应用科学高级研究杂志。 卷。 10。 编号 5。 2021年5月。 [6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。巴基斯坦农业研究杂志,33(4):858-865。[4] D.R.Chaudhary,S.C。Bhandari•和L.M.Shukla。 Vermicompost在可持续农业中的作用 - 评论。 Arigric。 修订版,25(1):29-39,2004。 [5] Virendra Kumar Singh博士。 ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。 国际工程和应用科学高级研究杂志。 卷。 10。 编号 5。 2021年5月。 [6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。Shukla。Vermicompost在可持续农业中的作用 - 评论。Arigric。修订版,25(1):29-39,2004。[5] Virendra Kumar Singh博士。ver塑料对农业系统中作物植物的土壤生育能力和生长属性的影响。国际工程和应用科学高级研究杂志。卷。10。编号5。2021年5月。[6] Edwards,C.A。 (1995)。 Biocycle,36(6)。 [7] Puneeta Dandotiya和O. P. Agrawal。 简单的方法,可以通过ver塑料改善土壤生育能力。 10月 jour。 env。 res。 卷。 2(2):139-147。[6] Edwards,C.A。(1995)。Biocycle,36(6)。[7] Puneeta Dandotiya和O. P. Agrawal。简单的方法,可以通过ver塑料改善土壤生育能力。10月jour。env。res。卷。2(2):139-147。[8] S. Manivannan,M。Balamurugan,K。Parthasarathi,G。Gunasekaran和L.S.Ranganathan。 Vermicompost对土壤生育能力和作物生产率的影响 - 豆类(叶状球)。 J. Environ。 生物。 30(2),275-281(2009)。 [9] Sriramulu Ananthakrishnasamy。 ver塑料和无机肥料对番茄作物生产率(番茄酱)和土壤肥力的影响。 国际药学和生物科学杂志 - ijpbstm(2019)9(4):432-441。Ranganathan。Vermicompost对土壤生育能力和作物生产率的影响 - 豆类(叶状球)。J. Environ。生物。30(2),275-281(2009)。[9] Sriramulu Ananthakrishnasamy。ver塑料和无机肥料对番茄作物生产率(番茄酱)和土壤肥力的影响。国际药学和生物科学杂志 - ijpbstm(2019)9(4):432-441。
Recommended Citation Recommended Citation Ai, Huisheng; Chao, Nelson J; Rizzieri, David A; Huang, Xiaojun; Spitzer, Thomas R; Wang, Jianxiang; Guo, Mei; Keating, Armand; Krakow, Elizabeth F; Blaise, Didier; Ma, Jun; Wu, Depei; Reagan, John; Gergis, Usama; Duarte, Rafael F; Chaudhary, Preet M; Hu, Kaixun; Yu, Changlin; Sun, Qiyun; Fuchs, Ephraim; Cai, Bo; Huang, Yajing; Qiao, Jianhui; Gottlieb, David; Schultz, Kirk R; Liu, Mingyao; Chen, Xiequn; Chen, Wenming; Wang, Jianmin; Zhang, Xiaohui; Li, Jianyong; Huang, He; Sun, Zimin; Li, Fei; Yang, Linhua; Zhang, Liansheng; Li, Lijuan; Liu, Kaiyan; Jin, Jie; Liu, Qifa; Liu, Daihong; Gao, Chunji; Fan, Chuanbo; Wei, Li; Zhang, Xi; Hu, Liangding; Zhang, Weijing; Tian, Yuyang; Han, Weidong; Zhu, Jun; Xiao, Zhijian; Zhou, Daobin; Zhang, Bolong; Jia, Yongqian; Zhang, Yongqing; Wu, Xiaoxiong; Shen, Xuliang; Lu, Xuzhang; Zhan, Xinrong; Sun, Xiuli; Xiao, Yi; Wang, Jingbo; Shi, Xiaodong; Zheng, Bo; Chen, Jieping; Ding, Banghe; Wang, Zhao; Zhou, Fan; Zhang, Mei; Zhang, Yizhuo; Sun, Jie; Xia, Bing; Chen, Baoan; and Ma, Liangming, "Expert Consensus on Microtransplant for Acute Myeloid Leukemia in Elderly Patients -Report From the International Microtransplant Interest Group" (2023). Department of Medical Oncology Faculty Papers. Paper 233. https://jdc.jefferson.edu/medoncfp/233
主题:根据第79(1)(1)(c)条,79(1)(F)和2003年《电力法》第79(1)(k)条,使用第20.8.8.8.8.8.2019的第4.5(a)条与请愿人和Solar Energy Compariations de India Power(SECI)一起执行的第20.8.8.8.5(ppa),以备份(SECI)的销售(seci),以读取(seci seci),以读取(seci Limit of Ligimim Ligith Limits) 2019年6月17日和2019年6月26日在SECI和BSES Yamuna Power Limited(BYPL)和TATA Power Delhi分布有限公司(TPDDL)之间执行,寻求预定商业运营日期(SCOD)的延长,并基于SCOD的延长,并基于SCOD的延伸,寻求依次的范围,以实用的范围延伸,依次降级的运营范围,该运营的运作范围降级(Ltt)的运作范围,劳动的运作委员(CTU)向请愿人。听证日期:3.8.2023 Coram:Shri Jishnu Barua,主席Shri I. S. Jha,成员Shri Arun Goyal,会员Shri P. K. Singh,请愿人:SBSR Power Cleantech Eleven Private Limited(SPCEPL)受访者(SPCEPL)受访者:印度有限公司的Solar Energy Corporation:India Limited(Secil)和Ors和Ors和Ors。聚会在场:Shri Hemant Singh,倡导者,Spcepl Shri Lakshyajit Singh Bagdwa,Spcepl,Spcepl女士Lavanya Panwar女士,Spcepl Shri M.G.Ramachandran,高级倡导者,Seci女士Anushree Bardhan,倡导者,Seci女士Tanya Sareen女士,倡导者,Seci Srishti Kindharia女士,倡导者,Seci Shri Anesh Bajaj,Seci Shri Anesh Bajaj,Seci Shri Shri Shri Anant Singh Udeja,seci Shri singh Udeja Vedant Chaudhary,倡导者,TPDDL Shri Gajendra Singh,NLDC Shri Subhendu,NLDC
Dinesh Kumar 教授,古尔冈大学和法里达巴德 JC Bose UST 前校长,印度 KUK 电子系退休 Tankeshwar Kumar 教授,哈里亚纳邦中央大学校长 CC Tirupathi 教授,印度博帕尔 NITTTR 主任 Ashutosh Bhardwaj 教授,印度德里大学物理与天体物理系 Satish K. Awasthi 教授,印度德里大学化学系 Nian X. Sun 教授,美国东北大学电气与计算机工程系 Alexandr Tovstolytking 教授,乌克兰国家科学院和乌克兰机械与电子科学学院磁学研究所 Gurmeet Singh Lotey 教授,美国普渡大学物理系,402 N Blackford St,印第安纳波利斯,IN 46202,美国 RC Ramola 教授,HNB 加瓦尔大学物理学教授 Rohit 教授Mehra,贾朗达尔 BR Ambedkar 国立科技学院物理系教授 Shinji Tokonami 教授,日本弘前大学放射急诊医学研究所所长兼教授 Shravan Kumar Singh 博士,印度国家医学研究与发展组织辐射生物技术系科学家兼联合主任,德里 110054 Dharamvir Singh Ahlawat 教授,印度西尔萨 Chaudhary Devi Lal 大学 Alok K. Kushwaha 博士,澳大利亚阿德莱德大学电气与机械工程学院 Anoop Sunny 博士,澳大利亚阿德莱德大学物理、化学与地球科学学院 Satinder Sharma 教授,印度曼迪理工学院电子系主任兼系主任 Manoj Kumar Khanna 教授,印度德里大学电子科学系
抗菌素抵抗(AMR)构成了关键的全球健康威胁,使全球感染管理变得复杂。关于世界卫生组织(WHO)在2019年释放的抗生素抗药性患病率的数据导致127万人死亡(Murray等,2022; Who,2023)。此外,世界银行估计,到2050年,AMR的经济影响可能会损失高达1万亿美元的医疗保健费用,而到2030年,国内生产总值(GDP)损失了3.4万亿美元(Jonas等人,2017年)。迫切需要发现新药替代耐药性抗生素已变得越来越重要。最大的新抗生素生产商来源之一来自土壤,其中99%的微生物物种。抗菌化合物是由土壤中的微生物产生的,由于传统培养技术的局限性,这些化合物在实验室中通常仍然无法培养,而传统培养技术无法复制微生物的自然栖息地(Choi等,2015; Bhattacharjee,2022222)。具有获取新抗生素剂的巨大潜力的土壤类型是泥炭土(Kujala等,2018; Liu等,2022; Atapattu等,2023)。泥炭土包含富含养分的有机沉积物,这些养分支持微生物生长和多样性(Nawan and Wasito,2020)。必须利用泥炭土中丰富的微生物含量来开发新的抗生素。当前的微生物培养技术通常仅限于微生物的一部分,从而限制了二级代谢产物的分离。克服这些局限性需要创新的方法来培养产生抗生素的微生物,这些微生物在实验室条件下仍然无法养活。未经培养的土壤技术(UST)或原位孵育是最新的发展之一,涉及使用环境中存在的自然生长因子进行培养(Berdy等,2017; Chaudhary等,2019)。
非侵入性脑部计算机界面(BCIS)是一种令人兴奋的技术,它为大脑与计算机之间的通信提供了通道。bcis可用于交流(Brumberg等,2018; Chaudhary等,2016),康复(Cervera等,2018),娱乐设备(Gürkök等,2017),以及其他应用程序(Finke等,2009; Makeig et e e e ectig et al。,2011)。在本研究主题的第一卷(Daly等,2021)中,我们发布了包括通过多种模式和BCI范式记录的信号的数据集,包括新型事件相关电位(ERP)(ERP)和基于稳态的视觉诱发电位(SSVEP)基于BCIS的bcis,Motor bcis,Motory bcis,BCIS,BCIS,BCIS,a bciiss a a,a bcis,a bciS a效率,效果,尼古丁成瘾的BCIS以及静止状态数据。但是,BCI的研究正在不断发展,对新的公开数据集的需求越来越不断发展。的确,BCI技术的持续发展取决于许多不同的研究领域的进步,这些研究领域可以单独和集体地改善BCI系统的各个方面,包括信号获取,处理,分类,分类和用户界面设计。尽管如此,只有少数高质量的公共可用数据集可以在这些数据集上开发,评估和比较新的系统,工具和技术。此外,这些数据集的大小和数量相对较小,将过度拟合的风险引入了使用这些数据集开发和评估的方法。为了继续应对这一挑战,该研究主题提供了第二个出版物和相应数据集的集合。换句话说,BCI研究的可靠性和可重复性可能会因缺乏和稀疏性数据集而阻止。他们报告了在世界各地BCI研究实验室的开发,培训和评估过程中记录的生理数据集。用脑电图(EEG)和附近的红外光谱(FNIRS)收集数据。刺激范围内的刺激表现涵盖了不同的感觉方式。Botrel等人的文章。描述了一项关于神经反馈范式中关于α下调和
1。英国前瞻性糖尿病研究(UKPDS)小组。与经常治疗和2型糖尿病患者发生的常见治疗和并发症的风险相比,用磺胺溶质或胰岛素进行密集的血液控制(UKPDS 33)。柳叶刀。1998; 352(9131):837- 853。2。Holman RR,Paul SK,Bethel A,Matthews DR,Neil Haw。 2型糖尿病中密集葡萄糖控制的10年年。 n Engl J Med。 2008; 359:1577- 1589。 3。 糖尿病控制和并发症试验研究小组。 强化糖尿病的强化治疗对胰岛素依赖糖尿病的长期并发症的发育和前期的影响。 n Engl J Med。 1993; 329:977- 986。 4。 Nathan DM,Cleary PA,Backlund JY等。 糖尿病控制和糖尿病干预措施和复杂性(DCCT/EDIC)研究小组的试验/流行病学研究小组:1型糖尿病患者的强化糖尿病治疗和心血管疾病。 n Engl J Med。 2005; 353:2643- 2653。 5。 bin rakhis sa Sr,Alduwayhis NM,Aleid N,Albarrak An,Aloraini AA。 2型糖尿病患者的血糖控制:系统评价。 cureus。 2022; 14(6):E26180。 doi:10.7759/cureus.26180 6。 Parker ED,Lin J,Mahoney T等。 2022年美国糖尿病的经济成本。 糖尿病护理。 2024; 47(1):26-43。doi:10.2337/dci23 -0085 7。 Puckrein GA,Hirsch IB,Parkin CG等。 0377 8。Holman RR,Paul SK,Bethel A,Matthews DR,Neil Haw。2型糖尿病中密集葡萄糖控制的10年年。 n Engl J Med。 2008; 359:1577- 1589。 3。 糖尿病控制和并发症试验研究小组。 强化糖尿病的强化治疗对胰岛素依赖糖尿病的长期并发症的发育和前期的影响。 n Engl J Med。 1993; 329:977- 986。 4。 Nathan DM,Cleary PA,Backlund JY等。 糖尿病控制和糖尿病干预措施和复杂性(DCCT/EDIC)研究小组的试验/流行病学研究小组:1型糖尿病患者的强化糖尿病治疗和心血管疾病。 n Engl J Med。 2005; 353:2643- 2653。 5。 bin rakhis sa Sr,Alduwayhis NM,Aleid N,Albarrak An,Aloraini AA。 2型糖尿病患者的血糖控制:系统评价。 cureus。 2022; 14(6):E26180。 doi:10.7759/cureus.26180 6。 Parker ED,Lin J,Mahoney T等。 2022年美国糖尿病的经济成本。 糖尿病护理。 2024; 47(1):26-43。doi:10.2337/dci23 -0085 7。 Puckrein GA,Hirsch IB,Parkin CG等。 0377 8。年。n Engl J Med。2008; 359:1577- 1589。3。糖尿病控制和并发症试验研究小组。强化糖尿病的强化治疗对胰岛素依赖糖尿病的长期并发症的发育和前期的影响。n Engl J Med。1993; 329:977- 986。4。Nathan DM,Cleary PA,Backlund JY等。 糖尿病控制和糖尿病干预措施和复杂性(DCCT/EDIC)研究小组的试验/流行病学研究小组:1型糖尿病患者的强化糖尿病治疗和心血管疾病。 n Engl J Med。 2005; 353:2643- 2653。 5。 bin rakhis sa Sr,Alduwayhis NM,Aleid N,Albarrak An,Aloraini AA。 2型糖尿病患者的血糖控制:系统评价。 cureus。 2022; 14(6):E26180。 doi:10.7759/cureus.26180 6。 Parker ED,Lin J,Mahoney T等。 2022年美国糖尿病的经济成本。 糖尿病护理。 2024; 47(1):26-43。doi:10.2337/dci23 -0085 7。 Puckrein GA,Hirsch IB,Parkin CG等。 0377 8。Nathan DM,Cleary PA,Backlund JY等。糖尿病控制和糖尿病干预措施和复杂性(DCCT/EDIC)研究小组的试验/流行病学研究小组:1型糖尿病患者的强化糖尿病治疗和心血管疾病。n Engl J Med。2005; 353:2643- 2653。5。bin rakhis sa Sr,Alduwayhis NM,Aleid N,Albarrak An,Aloraini AA。2型糖尿病患者的血糖控制:系统评价。cureus。2022; 14(6):E26180。doi:10.7759/cureus.26180 6。Parker ED,Lin J,Mahoney T等。2022年美国糖尿病的经济成本。糖尿病护理。2024; 47(1):26-43。doi:10.2337/dci23 -0085 7。Puckrein GA,Hirsch IB,Parkin CG等。0377 8。评估胰岛素治疗的糖尿病的医疗保险受益人中葡萄糖的依从性的评估。糖尿病技术。2023; 25(1):31-38。doi:10.1089/dia.2022。Siddiqui MH,Khan IA,Moyeen F,Chaudhary KA。在2型糖尿病中识别对治疗性依从性的障碍:一种复杂和
References Neural Activity in the Olfactory Bulb Evoked by Aversive, Non-Olfactory Stimuli and Patterned by Respiration KA Perkins Jr - 2025 [HTML] Chemosensory Impairments and Their Impact on Nutrition in Parkinson's Disease: A Narrative Literature Review S Alia, E Andrenelli, A Di Paolo, V Membrino… - Nutrients, 2025 [HTML]启示:一种非侵入性癌症检测和监测AJ Moshayedi的新领域 Lindroos… - bioRxiv, 2025 [HTML] Prediction of alcohol intake patterns with olfactory and gustatory brain connectivity networks K Agarwal, S Chaudhary, D Tomasi, ND Volkow… - Neuropsychopharmacology, 2025 Olfaction and drug delivery to the human olfactory airspace: current challenges and recent advances DO Frank-Ito - Expert Opinion on Drug Delivery, 2025 The COVID-19与COVID相关的气味功能障碍对性和心理健康的影响:来自纵向样本MK Hofer,L Blume,L Blume,BJ Turner,Lschäfer,I Croy… - 生物心理学…… - 2025年,2025年[PDF]鼻腔炎患者的鼻腔症状可能会导致过敏性鼻炎的鼻腔症状,可能会导致性dysfunuction hh Zhang,khang khang hhang, Liang… - Journal of Asthma and …, 2025 [HTML] Chemosensory and cardiometabolic improvements after a fasting-mimicking diet: A randomized cross-over clinical trial A Micarelli, S Mrakic-Sposta, A Vezzoli, S Malacrida… - Cell Reports Medicine, 2025 [PDF] Altered corticostriatal connectivity in long-COVID patients is associated with cognitive impairment M Troll,M Li,T Chand,M Machnik,TRocktäschel… - 心理医学,2025年,先天性厌食和主观触觉功能:一项试点研究。Saluja S,TóthAL,Peter M,Fondberg R,Tognetti A,LundströmJn。chand Brain res。2025年2月19日:115487。 doi:10.1016/j.bbr.2025.115487。鼻息肉(CRSWNP)在慢性鼻苏炎中的缓解。
・东盟生物多样性中心(2023)。东盟生物多样性前景3。从https://abo3.aseanbiodiverity.org/・Baloloy A.B.检索等。(2023)。绘制菲律宾的多年红树林变化:植被范围以及与人类和气候相关因素的影响。in:Leal Filho,W.,Kovaleva,M.,Alves,F.,Abubakar,I.R。(eds)气候变化策略:处理适应不断变化的气候的挑战。气候变化管理。Springer,Cham。 https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。Springer,Cham。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。(2023)。不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。in icimod(P. Wester等人[eds。]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。123–163)。icimod。https://doi.org/10.53055/icimod.103 ・Corcino R.等。(2023)。菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。海洋科学区域研究(2024)。一个监测保护区和其他基于区域的保护措施的生物多样性的框架。IUCN WCPA技术报告系列7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。(2023)。(2023)。Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。全球生物多样性观察系统,以团结监测和指导行动,《自然生态与进化》第7期,第2173页。https://doi.org/10.1038/s41559-023-023-02263-x,环境科学领域,11。https://doi.org/10.3389/fenvs.2023.1281536 ・Hughes A.C.(2023)。帖子 - 2020年全球生物多样性框架:我们是如何到达这里的,下一个我们要去哪里?综合保护2(1)1-9。 https://doi.org/10.1002/inc3.16 ・ icimod(2023)。印度教库什·喜马拉雅山的水,冰,社会和生态系统:看法。(P. Wester,S。Chaudhary,N。Chettri,M。Jackson,A。Maharjan,S。Nepal&J.F。Steiner [eds。]。icimod。https://doi.org/1053055/icimod.1028 ・Kass J.等。 (2023)。 生物多样性建模的进步将改善对大自然对人的贡献的预测。 生态与进化的趋势。 https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/1053055/icimod.1028 ・Kass J.等。(2023)。生物多样性建模的进步将改善对大自然对人的贡献的预测。生态与进化的趋势。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。(2023)。生态系统的红色列表,西方珊瑚三角的红树林。ecoevorxiv。https://doi.org/10.32942/x21k5p ・Mori A.S.等。(2023)。可持续性挑战,机会和解决方案,用于长期生态系统观察。皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。(2023)。审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。等。(2024)。(2023)。生态与环境杂志(印刷中)・蓬普特A.J.靶向站点保护以提高新的全球生物多样性目标的有效性,一个地球,7(1):11-17。 https://doi.org/10.1016/j.oneear.2023.12.007。salmo,S。G.等。联合国在生态系统恢复的十年中的东南亚红树林。海洋科学领域。https://doi.org/10.3389/fmars.2023.1341796 ・Shin N.等。(2023)。在1807 - 1838年的Kakuson日记中,来自日本Kanazawa的采矿植物物候记录。国际生物气象学杂志。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。 (2024)。 观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解? 正面。 环境。 SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。(2024)。观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解?正面。环境。SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。SCI。12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。(2024)。在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。正面。维持。旅行。3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。12。在线。https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://www.biodiverity-science.net/cn/article/shownewarticle.do。▶生活世界特刊,2023年。08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。・ Trisurat Y.等。(2023)。(2023)。气候变化对泰国的物种组成和植物区域的影响。多样性15,1087。https://doi.org/10.3390/d15101087 wee A.等。在东南亚红树林恢复中进行环境DNA(EDNA)的前景和挑战。海洋科学领域。https://doi.org/10.3389/fmars.2023.1033258演示材料都可以通过Apbon网站访问:http://wwwww.esabii.biodic.go.go.go.jp/ap-bon/ap-bon/index.htex.htex.htex.html