2019 年 11 月 - 2020 年 11 月 全球健康路径顾问。Brittany Doll(2023 届) 2021 年 1 月 - 2021 年 5 月 临床学徒导师。Julia Bosco(2024 届) 2021 年 8 月 - 2021 年 12 月 临床学徒导师。Julia Bosco(2024 届) 2021 年 10 月 11 日 临床硕士课程 - 4 年级医学生 2021 年 11 月 - 2023 年 5 月 临床和研究顾问。Brittany Doll(2023 届) 2021 年 11 月 - 2023 年 5 月 临床和研究顾问。Cody Diehl(2023 届) 2022 年 1 月 5 日 临床医师硕士课程 - 4 年级医学生 2022 年 1 月 - 2022 年 5 月 临床学徒导师。Maya Subramanian(2025 届) 2022 年 8 月 - 2022 年 12 月 临床学徒导师。Maya Subramanian(2025 届) 2022 年 10 月 5 日 临床医师硕士课程 - 4 年级医学生 2023 年 2 月 2 日 临床医师硕士课程 - 4 年级医学生 2023 年 4 月 19 日 临床医师硕士课程 - 4 年级医学生 2023 年 8 月 - 2023 年 12 月 临床学徒导师。Alexander Stuth(2026 届) 2023 年 10 月 11 日 临床医师硕士课程 - 4 年级医学生 2024 年 1 月 - 至今 全球健康途径顾问。Frank Chavez(2027 届)
Natalie Andzik,特殊及早期教育 Abul Azad,工程技术 Stephanie Baker,特殊及早期教育 Sheila Barrett,健康研究 Shannon Becker,世界语言与文化 Akosua Birago Poku,教育技术、研究与评估 MJ Blaschak,辅助医疗与交流障碍 Melissa Burlingame,环境研究 Arielle Cassiday,政治学 Yessenia Chavez,神经科学与行为 Shicheng Chen,健康研究 W. Catherine Cheung,辅助医疗与交流障碍 Peter Chomentowski,运动机能学与体育教育 Wonock Chung,运动机能学与体育教育 Gibson Cima,戏剧与舞蹈 Finley Cowlishaw,艺术史 Apoorva Dabholkar,生物科学 Purushothaman Damodaran,工业与系统工程 Amy Daniel,护理 Alisha Diggs,生物医学工程 Mary Lynn Doherty,音乐 Alissa Droog,研究与教学 Dr. T. Ajewole Duckett,黑人研究 Amanda Durik,心理学 Melissa Fickling,咨询与高等教育 Larissa Garcia,大学图书馆 Kim Gatz,传播学 Rachel Gordon,健康研究 Scot Grayburn,生物科学 Liping Guo,工程技术 Arnold Hampel,生物化学名誉教授 Kendall Hampton,公共管理 Anne Hanley,历史 Michael Henson,生物科学 ASM Shahadat Hossain,计算机科学 Pi-Sui Hsu,教育技术、研究与评估 Aliyan Rizwan Hussain,会计 Farah Ishaq,运动机能学与体育教育 Darius Jackson,拉美裔和拉丁美洲研究中心 Priyanka Jha,咨询与高等教育 Dorcas Joseph,物理学 Stacy Kelly,特殊与早期教育 Colin Kuehl,政治科学与环境研究 Michael Kushnick,联合健康和交流障碍 Xiaohui (Sophie) Li,家庭与消费者科学学院
职位名称:教师助理,婴幼儿 任职部门:儿童发展中心 FLSA 状态:不豁免 全职/兼职:兼职 薪酬:每小时 15.25 美元 报告给:项目协调员 点击此处申请! 学生会概要 学生会 (AS) 的使命是继续该组织的学生倡导和领导传统,支持和代表圣何塞州立大学的学生;通过高质量的项目和服务提高 SJSU 学生的教育水平;并为学生毕业后走向深思熟虑和有目的的生活做好准备。AS 是一家非营利性辅助公司,为圣何塞州立大学的学生提供服务,其主要资金来源是强制性的学生会费。AS 部门包括 Cesar Chavez 社区行动中心、儿童发展中心、总务中心、人力资源、信息技术、活动、营销、印刷和技术中心、学生会和交通解决方案。 职位概要 教师助理根据中心的运营政策和理念协助主导教师进行儿童发展项目的日常运作。教师助理有权根据中心的政策和其指定教室的指导方针,根据自己的最佳判断指导儿童。加州执照规定要求,在 ECE 方面拥有不到 12 个学分的教师助理必须在完全合格的教师的监督下进行监督(第 22 条第 101216.2e 节)。拥有加州助理教师许可证(或更高)的教师助理可以替代主导教师。在这些情况下,具有教师资格的助教将担任主导教师,负责教室的领导和运营,并负责儿童和在教室工作的其他成年人(即志愿者、实习生、ChAD 60 学生)。替代主导教师的职责包括出勤、食物计数、规划和实施课堂课程、保持适当的课堂比例并在需要时寻求额外帮助、确保遵守儿童安全程序并通知助理主任有关儿童生病的情况。基本职能
2 地理空间研究中心(NZ)有限公司,新西兰 1.简介 无人驾驶飞行器 (UAV) 是载人飞机和卫星的可行替代品,可用于各种应用,包括环境监测、农业和测量。与传统方法相比,它们具有更高的精度和更低的运营成本。自动驾驶系统对无人机系统的成功至关重要,该系统可以在没有人类飞行员的情况下让飞行器保持在空中并处于控制之中。无人机自动驾驶系统的开发是一个正在深入研究的领域。使用无人机软件飞行动力学模型在虚拟(软件)环境中测试自动驾驶系统的能力对于开发具有重要意义。可靠的无人机模拟过程可以适用于不同的飞机,这将为开发自动驾驶系统提供一个平台,减少对昂贵的现场试验的依赖。在许多情况下,在虚拟环境中测试新开发的自动驾驶系统是保证绝对安全的唯一方法。此外,该模型将在受控飞行环境中实现更好的测试重复性。飞行动力学的数值建模在航空航天工业中有着悠久的历史,并用于所有现代飞机和卫星的开发。飞行动力学模型是所提议的飞行器(在本例中为 UAV)预期的稳态性能和动态响应的数学表示(dcb.larc.nasa.gov/Introduction/ models.html)。飞行动力学模型的用途多种多样。商业、军事、政府组织和学术部门使用飞行模型来完成其特定任务(Chavez 等人2001)。示例应用包括控制算法测试、初步设计的稳定性和飞行特性评估、机载嵌入式自动驾驶系统和机载惯性导航系统 (INS)。在无人机和自动驾驶系统的开发中,用于飞行模拟的飞行动力学模型允许在计算机上进行快速和安全的测试。但是,从第一原理开发的软件模型的准确性未知。为了使这种模型真正发挥作用,其开发过程必须包括实施、验证和确认。本章介绍了开发过程每个阶段的方法。
第四修正案 18 USC 第 2701 条 SCA 授权电子通信服务提供商自愿向政府实体披露与客户有关的记录或其他信息(不包括任何通信内容),如果提供商真诚地认为存在对任何人造成死亡或严重人身伤害的紧急情况,需要立即披露与紧急情况相关的信息。 美国诉 Kyllo,533 US 27 (2001)(热成像) 使用感知增强技术(热成像)收集有关住宅内部的任何信息,而这些信息如果不侵入宪法保护区则无法获得,这构成了“搜查”。 美国诉 Jones,565 US 400 (2012)(附加 GPS 设备) 政府将 GPS 设备附加到车辆上并使用该设备监视车辆的移动构成了第四修正案下的搜查。佛罗里达州诉贾丁斯案,569 US 1 (2013)(警犬嗅探)政府使用训练有素的警犬调查住宅及其周围环境属于《第四修正案》所定义的搜查。莱利诉加利福尼亚州案,573 US 373 (2014)(扣押手机)一般情况下,警方不得在没有搜查令的情况下搜查从被捕者手中扣押的手机上的数字信息。卡彭特诉纽约州案 138 S.Ct. 2206 (2018)(CSLI 搜查)个人对其基站记录的隐私有合理的期望。只有在犯罪嫌疑人对第三方持有的记录拥有合法隐私权益的极少数情况下才需要搜查令。尽管政府通常需要搜查令才能访问 CSLI,但特定案件的例外情况(例如紧急情况)可能支持无搜查令搜查。个人对其身体活动记录的隐私期望是合理的,如 CSLI 美国诉查韦斯案,423 F.Supp. 3d 194 (WDNC 2019)(Facebook 隐私) 中所述。Facebook 用户对其有意不向公众开放的内容有合理的隐私期望。被告将公众排除在某些非公开内容之外的行为表明,他对该内容保持了主观的隐私期望。
诱导的所需基因表达一直是揭示基因功能和调节合成生物学和治疗应用的细胞活性的重要策略。Apart from ectopically expressing additional copies of a gene by introducing their open reading frames (ORFs), methods to arti fi cially activate endogenous copies of genes have been explored, including transcription activating factors tethered to zinc fi nger proteins ( Beerli et al., 2000 ) and transcription activator-like effectors (TALE) ( Miller et al., 2011 ; Zhang et al., 2011 ; Maeder等人,2013b; Perez-Pinera等,2013b)。Originally discovered as a virus-resistance mechanism from bacteria ( Barrangou et al., 2007 ), the CRISPR-Cas system has provided ef fi cient, precise, and scalable ways to modulate expression of genes, and has been successfully adopted for targeted gene activation ( Mali et al., 2013 ; Perez-Pinera et al., 2013a ; Maeder et al., 2013a ; Cheng et al., 2013年,Tanenbaum等人,2014年;为了使用CRISPR-CAS9实现基因激活,创建了催化失活的Cas9(DCAS9),以与特定的基因组区域结合而没有能力创建双链突破(Jinek et al。,2012; Gasiunas et al。,2012; Qi et al。,2013; Qi et al。,2013; Konermann et; Konermann et al an al an eal; konermann et al。,2013; a e e,2013; i。赋予DCAS9具有诱导基因表达的能力,已经探索了不同的转录激活域的基因激活强度(图1A)。第一代CRISPRA的灵感来自锌纤维和基于故事的方法,并使用了包括VP64或P65在内的单个激活域。vp64由VP16的四个副本组成,该副本是源自单纯疱疹病毒的转录激活因子。p65是NF-κB复合物的一部分,负责免疫信号传导中的转录激活。第二代CRISPRA系统制定了不同的策略来招募不同的激活剂的多个副本,包括用于招募10或24份VP64副本的Suntag阵列到给定的基因座,VP64,P65和RTA(VPR)的串联融合到DCAS9,以及
9:00 – 10:30 会议:基层教育:可操作举措 Uchenna Onwuamaegbu-Ugwu,Edufun Technik 创始人(尼日利亚) Jemima Enyonam Kwakuyi,Xavier Space Solutions 天文学教育家和初级电子工程师(加纳) Lily Rospeen Asongfac,青年可持续空间发展创始人(喀麦隆):航空航天宝贝项目 Hira Fatima,卡拉奇大学空间教育倡导者(巴基斯坦) Ira Sharma,尼泊尔空间基金会初级卫星研究员(尼泊尔) Susan Murabana,Travelling Telescope 联合创始人(肯尼亚) 主席:Anne-Claire Grossias,联合国外层空间事务办公室助理项目官员 10:30 – 10:50 咖啡休息 10:50 – 11:00 来自联合国外层空间事务办公室领导的“全民太空 HyperGES”机会全女性获胜团队的视频信息:对血细胞进行超重力实验。来自玻利维亚“圣巴勃罗”天主教玻利维亚大学的研究人员。 11:00 – 12h10 小组讨论:赋予妇女权力参与太空研究和创新 乔治娜·查韦斯,研究协调员,玻利维亚圣普韦布洛天主教大学(玻利维亚) 斯米塔·弗朗西斯,高级讲师,纳米比亚科技大学(纳米比亚) 朱莉娅·米尔顿,工程师,美国国家航空航天局(美国) 费丝·卡兰贾,副教授,内罗毕大学地理空间和空间技术系(肯尼亚) 拉尼亚·图克布里,高级团队负责人,Akkodis 航空航天和国防(突尼斯) 主持人:詹妮弗·格里·布兰克,高级科学家,蓝色大理石空间科学研究所(美国) 12:10 – 12:30 主旨演讲:针对撒哈拉以南非洲地区的全球公平在线学习公平研究 诺拉·麦金太尔,教育创新副教授,南安普顿教育学院 12:30 – 13:30 午餐 13:30 – 14:40 小组讨论:分享切实可行的定制能力建设解决方案,以实现太空和 STEM 领域的性别平等 Anita Antwiwaa,加纳 All Nations 大学工程学院院长 Carolyn Deaderick,美国太空司令部妇女、和平与安全指挥部负责人(美国) Nadia Fernanda Sanchez Gomez,She Is Foundation 首席执行官兼创始人(哥伦比亚) Mindy Sue Howard,Inner Space Training 首席行政官兼创始人(荷兰) Anjana Narendra Vyas,LJ 大学教授(印度) 主持人:Shimrit Maman,本·古里安大学高级科学家(以色列)
2023 年 3 月 4 日,来自 GANA 日托中心、Golden Harvest 国际学校及日托中心、Loving Hands 日托中心、Pure Love 日托中心 I、Pure Love 日托中心 II 和 R&EQ 日/夜托中心的共 29 名儿童保育提供者完成了“心智形成 (MITM) – 七项基本生活技能”系列培训。这些培训课程由 Evergreen Learning 培训和发展专家 Grace M. Mallari 在 Chalan Kanoa 的 Evergreen Learning 培训中心主持。心智形成 (MITM) 是家庭和工作研究所的一项计划。它通过创新的深入培训和针对行动的材料分享儿童大脑发育和学习的科学。每个“心智形成”模块都包括学习目标和成果、领先儿童发展专家的研究视频、实用的教学技巧以及提供者单独、与伴侣或小组完成的活动。为儿童保育提供者提供 Mind in the Making 培训,以支持儿童保育和发展基金 (CCDF) 计划的愿景,即“北马里亚纳群岛联邦的所有儿童都将成为安全、健康和蓬勃发展的文化多元社区成员。他们的家庭将获得实现潜力所需的高质量支持。”培训系列包括基于大脑执行功能的七项基本生活技能。它们将我们的社交、情感和认知能力结合在一起,以解决和实现目标。研究发现,它们对于学校和生活中的成功至关重要。MITM 的七项基本生活技能是专注和自我控制、换位思考、沟通、建立联系、批判性思维、接受挑战以及自我导向、参与式学习。成功完成培训的 MITM Cohort 3 的提供者包括 Jeramy Tubale、Evangeline Rosalita、Ma。Isabel Estanislao、Andrea Camille Bayking、Ma。莫雷娜·纳瓦、伊琳·安吉利斯、莫雷娜·汗、迈克尔·安吉洛·苏亚索、朱莉·安·加西亚、埃斯特雷拉·朱米拉、梅塞德斯·哈维尔、拉尼·梅·萨格鲍、莎朗·安古斯图拉和格蕾丝·迪维纳格拉西亚。第 4 组提供者由 Marilyn Sagarino、Eva Flores、Aurora Parial、Reyna Fe Negara、Rachael Merced、Maileen Edquiba、Wilma Argabioso、Benedicta Mijares、Amelita Vidal、Valentina Gatmaitan、Janette Magat、Rosana Villaraiz、Angelica Claire Cubillan、Alexander Dumagat 和 Cristine Chavez Bargayo 组成。该培训可通过 CCDF 的早期学习科学计划(也称为 CNMI Brain Builders)提供。这是通过卫生与公共服务部、儿童保育办公室、社区和文化事务部下属的 CNMI CCDF 计划的资助实现的。
Omar A Abdolkarim Anais S Abro Audra Nicole Ahern Valerie Irene Akers Koma!Akhter David Paul Alatalo Elizabeth R Alexander Marilyn Anne Alli ReshmaM Amin Catherine Eileen Anthony David A Bak Brett Patrick Baker Bryan Lee Baker Kelly Elizabeth Baker Thomas J Balewski Allan Neal Baringer Hailey Alexis Bartlett Nicole Bates lank Allie Bazzy Candace Renae Bean Jessica Christine Beaudoin Kimberly Rose Beaudoin Andrew Decker Beer Kevin Roy Bennett Douglas MH Berlin Anne Christine Bernacki Richard C Bernard Candice Anne Bertovick Alex Robert Bessinger Sankalp Bhatnagar BijalRashmi Bhavsar Stephanie Ann Bielak Kristina Louise Birch Amanda Sue Bitsoli Gregory E Black Neil Donald Bochenek Lester A Booker Jr Christopher Dale Booth Lesley Ann Borromeo Chelsee Elizabeth Bosker Jacqueline惠特尼·布拉德利 克里斯托弗·L·布拉默 科里·迈克尔·布雷特迈尔 德希斯·拉蒙特·布里奇斯 托马斯·安东尼·Bnllati 克里斯塔·米歇尔·布罗德里克斯 娜塔莎·V·布朗 肯尼斯·马丁·布伦纳 尼尔·安德鲁·布伦纳 西娅·海伦娜·莱诺·布德 杰森·P·伯加米 杰森·M·伯克 凯尔·特雷弗·伯恩斯 乔萨琳·桑迪·伯雷尔 瓦莱丽·曼恩·巴特勒 瑞安·J·卡法雷利 凯瑟琳·曼恩·卡利尔 克里斯汀·阿什利·凯莱贾·拉腊 米歇尔·坎贝尔 斯蒂芬·安德鲁·坎贝尔 克里斯蒂娜·曼恩·卡波罗索 柯尔斯滕·曼恩·卡帕比安卡 艾米·玛塔·欧莱特·卡特 安德鲁·彼得·卡西诺 利奥·H·卡扎 乔丹·B·尚派恩 詹妮弗·梅·陈 乔纳森·艾萨克·查普曼 艾丽西亚·瓜达卢佩·查韦斯 杰弗里·A·奇尔德里斯 海莉·摩根 乔文·云松·郑 科琳·L·丘特 杰森·E·科尔 迈克尔·大卫·柯林斯 克里斯蒂娜·洛林·科米斯基 托马斯·斯科特·康斯坦丁 切尔西·N·库克 本杰明·詹姆斯·库亚尔 克里斯蒂娜·李Courtney Katelyn Leona Craig Kevin M Cramer Luke Alexander Crowley Megan Jo Crumm Maria Paula Campagna Cruz Jessica Mane Curran Jennifer E Czapski Katie Lynn Czopp Kristina Mane Dahl Adam Michael Daly Jean Mane Daniels Steven V Danish Christine J Davinich Dominique Antione Davis Jenna Michelle Davis Geoffrey Ryan Dean Timothy John Debien Nicholas M DeBone Richard Michael DeMeyere Ashley Jessica Oemsky Camille Eiise Devey Lindsay Anne Dew Kristina Mane Dickey Brendan E Diehl Sarah Ann DiMeglio Katherine Mane Ditzler Sally Anne Donaldson Shawn M Donlon Jenna Danielle Donnelly StephaniL Duncan Jessica Kelly Dzialowski Manssa Leigh Efros Ryan Keith Eggenberger Rachael Cathryn Egglesfield Raymond John Eisbrenner
SP140抗拒途径调节干涉mRNA稳定性和抗病毒免疫力Kristen C. Witt 1,2,Adam Dziulko 3,Joohyun An 1,2 An 1,2,Ophelia Vosshall Lee 1,2,Grace Liu 1,2 Kotov 1,2 , Preethy Abraham 1,2 , Angus Y. Lee 5 , Harmandeep Dhaliwal 5 , Laurent Coscoy 1,2 , Britt Glaunsinger 2,6,7 , Edward B. Chuong 3 , Russell E. Vance 1,2,5,6 1 Division of Immunology and Molecular Medicine, University of California, Berkeley, CA, USA 2 Department of Molecular and Cell Biology, University of美国加利福尼亚州加利福尼亚州,加利福尼亚州,美国3分子,细胞和发育生物学和生物露台研究所,科罗拉多大学科罗拉多大学博尔德大学,美国科罗拉多州科罗拉多州科罗拉多大学,美国4个国家癌症研究所,美国医学博士弗雷德里克,美国马里兰州弗雷德里克,美国医学博士,美国5个癌症研究实验室5 &Microbial Biology,加利福尼亚大学,加利福尼亚州伯克利分校,美国摘要I型干扰素(IFN-IS)对于抗病毒免疫至关重要,但必须严格调节。保守的转录阻遏物SP140通过未知机制抑制干扰素β(IFNB1)表达。我们发现,SP140不抑制IFNB1转录,而是通过直接抑制先前未表征的调节剂的表达来对IFNB1 mRNA稳定性进行负调节,我们称之为抗性(通过稳定转录物的稳定,先前被称为Annexin-2受体的稳定剂的抑制剂)。sp140位于核体内,点状结构在沉默的DNA病毒基因表达中起着重要作用。抵抗通过抵消由RNA结合蛋白的Tristetraprolin(TTP)家族介导的IFNB1 mRNA不稳定的IFNB1 mRNA稳定性,而CCR4-not-not not not notylase络合物则介导。与该观察结果一致,我们发现SP140抑制了Gammaherpesvirus MHV68的复制。SP140的抗病毒活性与调节IFNB1的能力无关。我们的结果为SP140建立了双重抗病毒和干扰素调节功能,并确定SP140抗性途径是IFNB1 mRNA稳定性的新调节剂。引言I型干扰素(IFN-IS)是细胞因子,在抗病毒免疫,自身免疫性和癌症1-3中起着核心作用。IFN-IS包括IFNB1和许多IFNA和其他同工型,它们通过IFNα受体(IFNAR)发出信号,以诱导数百个反感染3,4的干扰素刺激基因(ISGS)。 详细列举了导致IFNB1诱导的途径5,6。 然而,尽管长期以来,IFNB1 mRNA在细胞7中迅速翻转,但对控制IFNB1 mRNA稳定性的途径知之甚少。 这是令人惊讶的,因为mRNA更新是许多其他细胞因子8,9的关键调节点。 此外,大量证据表明,IFN-I负调节的重要性,因为过度的IFN-I可以驱动自身免疫性10,并且对细菌感染的敏感性6。IFN-IS包括IFNB1和许多IFNA和其他同工型,它们通过IFNα受体(IFNAR)发出信号,以诱导数百个反感染3,4的干扰素刺激基因(ISGS)。详细列举了导致IFNB1诱导的途径5,6。然而,尽管长期以来,IFNB1 mRNA在细胞7中迅速翻转,但对控制IFNB1 mRNA稳定性的途径知之甚少。这是令人惊讶的,因为mRNA更新是许多其他细胞因子8,9的关键调节点。此外,大量证据表明,IFN-I负调节的重要性,因为过度的IFN-I可以驱动自身免疫性10,并且对细菌感染的敏感性6。