酶工程是增强生物催化性能并优化基于蛋白质的材料的强大方法。本研究采用祖先序列重建(ASR),合理设计和过程条件优化,以提高酶稳定性,催化效率和功能特性。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。 为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。 为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。 工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。 在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。 从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。 用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。如分子动力学模拟所证明的那样,富含LYS和ASP的变体增加了吸收吸水,这证明了酶工程在可持续吸收材料开发中的潜力。这项研究整合了计算和实验酶工程策略,以改善化学合成和功能性生物材料的生物催化,为工业生物技术和可持续材料科学提供新颖的解决方案。
允许将本工作的全部或一部分供个人或课堂使用的数字或硬副本授予,而没有费用,只要副本不是盈利或商业优势,并且副本带有此通知和首页上的完整引用。必须尊重他人所拥有的这项作品的组成部分的版权。允许用信用摘要。否则复制或重新出版以在服务器上发布或重新分配到列表,需要事先特定的许可和/或费用。请求权限从permissions@acm.org。
1美国贝勒医学院病理与免疫学系的药物发现中心,美国德克萨斯州休斯敦77030,美国。2 Verna和Marrs McLean生物化学与分子药理学系,贝勒医学院,德克萨斯州休斯敦77030,美国。3,明尼苏达州明尼阿波利斯,明尼苏达州,明尼苏达州,分子生物学和生物物理学系,分子生物学和生物物理学,美国明尼苏达州55455,美国。4美国贝勒医学院国家热带医学院儿科系,美国德克萨斯州休斯敦77030。 5美国德克萨斯州贝茨街1102号,德克萨斯州休斯敦市贝茨街1102号疫苗开发中心,美国德克萨斯州77030,美国。 6伯克利结构生物学中心分子生物物理学和综合生物成像,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利94720,美国。 7,德克萨斯大学圣安东尼奥大学生物化学与结构生物学系,德克萨斯州圣安东尼奥市,美国78229,美国。 8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。 9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。 10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。 ✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu4美国贝勒医学院国家热带医学院儿科系,美国德克萨斯州休斯敦77030。5美国德克萨斯州贝茨街1102号,德克萨斯州休斯敦市贝茨街1102号疫苗开发中心,美国德克萨斯州77030,美国。 6伯克利结构生物学中心分子生物物理学和综合生物成像,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利94720,美国。 7,德克萨斯大学圣安东尼奥大学生物化学与结构生物学系,德克萨斯州圣安东尼奥市,美国78229,美国。 8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。 9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。 10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。 ✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu5美国德克萨斯州贝茨街1102号,德克萨斯州休斯敦市贝茨街1102号疫苗开发中心,美国德克萨斯州77030,美国。6伯克利结构生物学中心分子生物物理学和综合生物成像,劳伦斯·伯克利国家实验室,美国加利福尼亚州伯克利94720,美国。7,德克萨斯大学圣安东尼奥大学生物化学与结构生物学系,德克萨斯州圣安东尼奥市,美国78229,美国。8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。 9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。 10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。 ✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu8霍华德·休斯医学院,德克萨斯大学健康圣安东尼奥分校,圣安东尼奥,德克萨斯州78229,美国。9这些作者同样贡献:Ravikumar Jimmidi,Srinivas Chamakuri,Shuo Lu。10这些作者共同监督这项工作:Srinivas Chamakuri,Timothy Palzkill,Damian W. Young。✉电子邮件:srinivas.chamakuri@bcm.edu; timothyp@bcm.edu; damian.young@bcm.edu
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年3月21日发布。 https://doi.org/10.1101/2023.03.20.533577 doi:Biorxiv Preprint
比勒陀利亚大学计划资格组合(PQM)验证项目高等教育部门与南非所有机构的高等教育资格子框架(HEQSF)进行了广泛的一致性。为了遵守HEQSF,所有机构在法律上都必须参加由高等教育和培训部(DHET),高等教育理事会(CHE)和南非资格委员会(SAQA)等监管机构(SAQA)等监管机构领导的国家倡议。比勒陀利亚大学目前正在进行持续的努力,以使其资格和计划与HEQSF标准保持一致。当前和准学生应注意,由于HEQSF倡议,可能会发生更改资格和计划名称。如果有任何疑问,建议学生联系他们的教职员工。
Mbaye Dieng,Mohamed Bensifia,JérômeBorme,Ileana Florea,Catarina Abreu等。CVD石墨烯的湿化学非共价官能化:分子掺杂及其对电解质配备石墨烯现场效果晶体管晶体管的影响。物理化学杂志C,2022,126(9),pp.4522-4533。10.1021/acs.jpcc.1c10737。hal-03871463
芳香和脂肪液的分离是石化工业中最具挑战性的过程之一。这些分子表现出高度相似的物理和化学特征,使用常规方法提出了明显的挑战。蒸馏(用于工业分离的主要技术)依赖于反复的相变,并且特别是能源密集型的,用于分离复杂的混合物,例如芳香和脂肪族烃。在全球范围内,蒸馏和相关的分离过程近似于消耗10-15%的年能量,这是减少碳排放并推动可持续发展的主要障碍。1鉴于全球能源价格不断上升以及对更严格的环境法规的执行,人们对替代性,节能分离技术的需求不断增加,这可以减轻石化过程的环境足迹。
本报告中的信息和意见已由DCFPL编写,并且可能会更改,恕不另行通知。本文包含的报告和信息严格保密,仅针对选定的接收者,并且不得以任何方式更改,部分或分发,部分或全部,部分或全部任何其他人或媒体或媒体或未经DCFPL事先书面同意而以任何形式复制。尽管我们将努力以合理的基础更新此处的信息,但DCFPL并没有任何义务更新信息。此外,可能会有监管,合规性或其他原因可能阻止DCFPL这样做。非评级证券表明,在DCFPL可能以对该公司或某些其他情况下的咨询能力行事的情况下,对特定安全性的评级已暂时暂停,并且此类停职符合适用的法规和/或DCFPL政策。
图2。使用BERT衍生特征与(a)预测和(b)材料属性分类的模型性能比较模型性能。SMA,Ti合金和HEA的10倍MAE图与广泛的平行测试中所选特征数量(1-8)的函数相同。蓝线使用传统的经验特征(例如电负性,原子半径)表示模型性能,而红线表示BERT衍生的材料特征。检查的特性包括相变温度(MP,AP),转化焓(ΔH),屈服强度(σs),终极拉伸强度(σb),Vickers硬度(VH)和伸长率(EL)。Classification tasks include binary classification of Solid Solution (SS) vs. Non-Solid Solution (NSS), ternary classification of phase forms (Face-Centered Cubic (FCC), Body-Centered Cubic (BCC), and FCC-BCC mixed), and quaternary classification of SMA phases (B19'-B2, B19'-B19-B2, B19'-R-B2, B19-B2, and R-B2)。bert衍生的特征始终在几乎所有属性和特征数量上产生较低的预测误差,从而突出了它们捕获合金组成和属性之间内在关系的卓越能力。阴影区域代表跨平行测试的标准偏差。
在过去几年中,PCBL大大扩展了其专业产品组合。它已在Bleumina品牌下推出了50多个年级,用于工程塑料,墨件,油漆和涂料应用以及用于导电应用,例如导电聚合物,静电放电,电线,电缆和电池等导电应用。添加乙炔黑色将显着加强其在快速增长的导电段中提供众多等级的能力。