多年来,点击和生物正交反应一直是人们研究的焦点。这些高性能化学反应的开发是为了满足当今生物环境中常用的化学反应通常无法提供的要求,例如选择性、快速反应速率和生物相容性。点击和生物正交反应在生物医学领域因纳米药物工程而受到越来越多的关注。在这篇综述中,我们研究了从 2014 年至今的一系列文章,使用术语“点击化学和纳米粒子 (NPs)”来强调这种类型的化学在涉及用于生物医学应用的 NP 的应用中的应用。这项研究确定了点击和生物正交化学在被动和主动靶向方面提供的主要策略,用于具有用于成像和癌症治疗的特定和多种特性的 NP 功能化。在最后一部分,还讨论了一种新颖且有前景的“两步”靶向 NP 的方法,称为预靶向 (PT);更详细地介绍了该策略的原理以及从 2014 年至今列出的所有研究。
CHEM 105N 化学入门 (3 学分) 本课程是两个学期化学课程的第一部分,涵盖普通化学、有机化学和生物化学等主题。本部分将介绍无机(普通)化学的原理。涵盖的主题包括测量、原子和元素、化合物及其键、能量和物质、气体、溶液、酸和碱、化学反应和量、化学平衡和核化学。本课程不满足 CHEM 123N 的先决条件,不能用于 CHEM 专业或辅修。希望继续深造化学的学生应选修 CHEM 121N、CHEM 122N、CHEM 123N 和 CHEM 124N。如果学生已修过 CHEM 121N,则不允许修 CHEM 105N 的学分。CHEM 105N + CHEM 106N 满足大学科学本质通识教育要求的四个学分。先决条件:基本代数知识 共同要求:CHEM 106N
CHEM 1117. 绿色能源的化学视角:新兴技术和机遇。(4 小时)介绍 21 世纪日常能源背后的化学原理,包括传统能源和新兴能源。研究有关能源需求和燃料消耗对环境影响的关键问题。强调化学在寻找和出现可再生能源(如生物燃料、风能和先进电池技术)方面发挥的作用。为学生提供机会,让他们了解技术效率评估及其对当前全球气候的影响,并了解围绕传统和新兴能源技术的社会政治辩论。强烈建议学习高中化学。
海洋生态系统被认为是环境污染的重要受体部位,尤其是细菌。使用16S rRNA基因测序鉴定了从突尼斯中部(Mahdia沿海)收集的来自Posidonia Oceanica叶片的微生物组。使用微稀释方法研究了对几种抗菌剂的敏感性。从三种突尼斯植物,芳族芳香族,凤凰胺和杯状sempervirens提取的精油进行了测试。微稀释棋盘测定法显示了精油和阿莫西林的组合。葡萄球菌Arlettae(MN889255.1)和芽孢杆菌。(MG591719.1)从海草草地(Posidonia oceanica)叶片的微生物组中分离出来。这些分离株是多药耐药细菌。从J. phoenicea提取的精油表现出最高的抗菌活性。将这种精油与阿莫西林结合起来显示出针对SP和Arlettae链球菌分离株的重要作用。这些天然产物在重新加工或防止鱼类感染中显示出有希望的活性,以减少海洋生态系统中常规抗生素的使用。EOS可用于避免和/或治疗鱼类感染性疾病,并可以承诺在水产养殖中降低常规抗生素。
免疫力我们正在寻求一个高度积极进取的博士后研究员,以研究免疫系统代谢调节的基本方面。该项目旨在了解从宿主,饮食或微生物组衍生的代谢产物如何塑造组织居住的免疫细胞的生物学和代谢(例如,t细胞,先天淋巴样细胞(ILC))。特别是该作品旨在确定饮食的方式(例如高脂饮食,生酮饮食),饮食成分,运动和代谢物调节肥胖,慢性炎症和感染的免疫反应(Karagiannis等人免疫2020,Karagiannis等。自然2022,Theodorou等。Biorxiv 2024)。要将发现转化为人类患者,该项目将利用与临床医生的既定合作。候选人将有机会获得额外的外部资金,并在博士后培训期间制定独立的研究计划。,我们正在寻找一位热情的科学家,他们渴望作为一个友好和支持团队的一部分从事一个充满挑战和有益的项目。申请人拥有博士学位。预计将在六个月内获得学位的学位和研究生。理想的候选人将具有免疫学,组织生物学或细胞代谢的背景。在使用动物模型,组织(肺,肠),人体组织样本,多参数流式细胞术,分子生物学和荧光成像的经验。我们提供:我们提供跨学科的研究环境,促进创新和协作,并致力于对下一代科学家的培训和职业发展。该职位在最初的三年内可用,并有可能扩展。
摘要:随着气候变化的影响,环境化学的变化很大,从而影响了大气,水圈和岩石圈的化学过程。本综述通过检查大气化学,水化学,土壤化学和生物地球化学周期的变化来评估这一点。全球温度升高和温室气体排放的增加已改变了大气化学反应,导致空气质量的改变和二次污染物的形成。由于气候变化引起的水温变化和水化学变化,通过海洋酸化影响了海洋生物地球化学。养分循环,土壤有机物和金属迁移率也因土壤化学效应而改变。此外,综述着重于缓解和适应策略,涉及绿色技术和可持续实践来管理气候变化影响。在此分析中,环境化学被强调是通过综合当前研究工作在理解气候变化挑战中发挥重要作用。结束还建议进行进一步的研究,同时建议跨学科方法以及需要长期监测,以提高我们对气候变化影响的了解,并使政策制定者能够做出明智的决策。关键字:环境化学,海洋生物地球化学,土壤碳固化,绿色化学创新,生态毒理学效应。
[一] 博士YP Auberson 全球发现化学 诺华生物医学研究所 诺华园区 – WSJ-88.10 4056 瑞士巴塞尔 电子邮件:yves.auberson@novartis.com [b] YP Auberson 教授。 PB Arimondo 表观遗传化学生物学系 巴黎大学 Pastor 研究所 CNRS UMR3523 Chem4Life 28 Rue du Dr Roux, 75015 Paris, France [c] M. Duca 蔚蓝海岸大学 尼斯化学研究所 (ICN) UMR7272 CNRS Parc Valrose 06100 尼斯,法国 [d] Drs.博士U. Grether,博士AC Rufer F. Hoffmann-La Roche Ltd,制药研究与早期开发,pRED 罗氏创新中心巴塞尔 Grenzacherstrasse 124 4070 巴塞尔,瑞士G. Sbardella 博士表观遗传医学化学实验室萨勒诺大学药学系 via Giovanni Paolo II 132 I-84084 Fisciano (SA), 意大利 [g] U. Schopfer 博士 化学生物学和治疗学 诺华生物医学研究所 诺华园区 – WSJ-182.Z4.249.14 4056 瑞士巴塞尔 [h] 博士A. Torrens Welab Barcelona 巴塞罗那科学园。 Cluster II 大厦 4 楼 C/ Baldiri Reixac 4-8 08028 巴塞罗那,西班牙 [i] M.范德施特尔特
摘要这项研究研究了来自埃及新山谷的伊利特粘土的潜力,用于去除重金属离子(Cu(ii),Ni(ii),Zn(ii)和Cd(ii)),该粘土通过工业废水通过吸附过程。实验在各种受控条件下评估了吸附行为:不同的金属离子浓度,吸附剂剂量,溶液pH和混合时间(在500 rpm时)。使用傅立叶和纳米粘土的表征采用了傅里叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和传输电子显微镜(TEM)。结果表明,在室温下,Illite和Nanoillite在90分钟内通过室温(25°C)在90分钟内通过dirite和nanoillite迅速吸收。所有研究的金属离子(Cu(II),Ni(ii),Zn(ii)和CD(II))的浓度为3 mg/L。此外,吸附等温度数据建议与二阶动力学模型更好地拟合,这表示吸附机理。最后,伊利石/纳米粘土的有效性通过其在去除现实世界工业废水中的金属离子中的应用来证明,从而大大降低了其浓度。这种方法解决了与重金属污染相关的环境和健康问题。关键字:纳米颗粒;吸附;重金属;动力学等温;伊利特;工业废水1。由于其高效率,易于处理性,众多吸附剂的可用性以及负担能力,通常在所有水处理方法中选择吸附,以去除重金属离子。引言近年来,研究重点是从水溶液[1],离子交换[2],化学沉淀[3],植物渗透[4],超滤,逆渗透和电差异[5]中取出重金属[5]只是迁移分解的重量分泌的多种方法中的几种方法。活化碳是使用最广泛的吸附剂,并以其高金属吸附能力而闻名[7]。尽管活性炭是从废水中消除金属离子的有用工具,但其使用量很高,因此需要添加螯合化学物质以最大程度地提高其有效性,从而提高了治疗成本[8]。在过去的二十年中,寻找负担得起,高效的重金属吸附剂的许多工作。此外,已经检查了几种天然材料和废物的吸附行为[9]。这些材料包括农业副产品,微生物和粘土矿物质[10]。这些研究中的大多数表明,天然货物可以作为重金属吸附剂的功能良好[11]。重金属离子发生在许多工业活动中,这种污染对环境和人类健康构成了严重威胁,因为这些金属是不可生物降解的,有毒的,即使在低浓度下,也进入食物链[12]。重金属在人体中的积累会导致大脑,皮肤,胰腺和心脏病[13,14]。重金属被归类为有毒和致癌,它们能够在组织中积累并引起疾病和疾病(表1)。更重要的是,粘土价格便宜,丰富,广泛并且随时可用。粘土表现出可以去除水污染物(例如化学物质[16,17]和重金属[18])的能力。其他考虑因素是用户友好性,文化可接受性和低维护成本。Illite是一个2:1粘土矿物质,几乎没有层间肿胀的趋势[19]。具有Illite的吸附过程取决于几个因素,包括pH,吸附剂含量,初始吸附浓度,接触时间,温度,粒径和离子强度。在常规方法中,实验是通过系统地改变所研究因素的同时将其他因素持续进行的。主要的好处是,不仅可以评估单个参数的影响,而且可以在给定过程中的相对重要性以及得出两个或多个变量的相互作用的能力[20]。这项研究的目的是将伊利特用作吸附剂,然后准备伊利特nano Illite,然后将其用于工业废水水中的cu(ii),ni(ii),Zn(ii),Zn(ii)和cd(ii)离子。我们详细评估了Illite和Nano Illite的去除性能。等温线和热力学建模。
抽象的灰泥古迹非常容易受到损害,其合并需要评估新的和先进的材料。纳米复合材料应用于许多历史材料(如石材和壁画绘画)时,已显示出高度有希望的合并结果。当前的实验研究评估了添加到石墨氮化碳(G-C 3 N 4)中的生物活性玻璃纳米颗粒(BG NP)的有效性,并与丙酮中的寄生虫(B-72)混合。在此,分别通过溶胶 - 凝胶和热分解化学途径制备了生物活性玻璃纳米颗粒和氮化石纳米片。已经使用透射电子显微镜(TEM),X射线衍射(XRD)和傅立叶变换红外(FT-IR)研究了所制备的纳米植物的理化特性。此外,使用动态光散射技术研究了胶体性能。评估协议概述了一个六步过程,以评估经过人工老化程序后与纳米复合材料合并的标准样品的适用性。该研究涉及通过使用数字显微镜和SEM暴露于各种条件后的合并样品的变化,以识别合并后的灰泥样品的外观,并在应用所选的纳米复合材料和人造老化程序后。使用比色表来测量颜色变化,并在老化之前和之后进行样品进行比较。物理和机械性能,并测量接触角以确定疏水性或亲水性。获得的结果表明,生物活性玻璃/G-C 3 N 4杂交纳米复合材料的组成为Bg 0.5%,G-C 3 N 4 1%和B-72 3%在苏顿糖样品的拟议混合物中获得了最佳的固结结果。关键字:灰泥,混合,调查,颜色变化,接触角,SEM,XRD。